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Abstract

This paper addresses the development of a unified framework for quantifying hysteresis and
constitutive nonlinearities inherent to ferroelectric, ferromagnetic and ferroelastic materials. Because the
mechanisms which produce hysteresis vary substantially at the microscopic level, it is more natural to
initiate model development at the mesoscopic, or lattice, level where the materials share common energy
properties along with analogous domain structures. In the first step of the model development, Helmholtz
and Gibbs energy relations are combined with Boltzmann theory to construct mesoscopic models which
quantify the local average polarization, magnetization and strains in ferroelectric, ferromagnetic and
ferroelastic materials. In the second step of the development, stochastic homogenization techniques are
invoked to construct unified macroscopic models for nonhomogeneous, polycrystalline compounds
exhibiting nonuniform effective fields. The combination of energy analysis and homogenization
techniques produces low-order models in which a number of parameters can be correlated with physical
attributes of measured data. Furthermore, the development of a unified modeling framework applicable
to a broad range of ferroic compounds facilitates material characterization, transducer development, and
model-based control design. Attributes of the models are illustrated through comparison with
piezoceramic, magnetostrictive and shape memory alloy data and prediction of material behavior.
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1. Introduction

Ferroelectric, ferromagnetic and ferroelastic materials share a number of mesoscopic
and macroscopic attributes including the formation of analogous domain structures and
the presence of hysteresis and constitutive nonlinearities as illustrated in Fig. 1. While
hysteresis and constitutive nonlinearities are inherent to all presently employed ferroic
compounds, the degree and severity of these effects can often be mitigated by restricting
drive levels, employing appropriate drive electronics, or incorporating feedback loops in
transducers. In many applications, however, hysteresis and material nonlinearities are
unavoidable and must be incorporated in models and subsequent control designs to
achieve the full capabilities of the materials. To illustrate, we consider the behavior of
certain representative ferroelectric, ferromagnetic and ferroelastic materials employed in
present high performance transducer applications.

Piezoceramic actuators are employed for nanoscale positioning due to their high set
point accuracy and broadband capability. In present atomic force microscope (AFM) or
scanning tunneling microscopic (STM) designs, PID or robust control laws are employed
to mitigate hysteresis in the relation between input fields or voltages and strains generated
by the device (Salapaka et al., 2002; Schitter et al., 2001). This is effective for low scan rates
and has led to the phenomenal success of the devices. However, at the higher scan rates
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Fig. 1. Hysteresis and constitutive nonlinearities exhibited by various ferroic compounds: (a) PZT5A data; (b)

Terfenol-D data; (c) NiTi data.
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required for mass product diagnostics (e.g., quality evaluation of semiconductor chips) or
real-time monitoring of biological processes (e.g., observation of protein folding
dynamics), noise to data ratios and diminishing high pass characteristics of control filters
preclude the sole use of feedback control laws to mitigate hysteresis, and control designs
utilizing model-based inverse compensators are under investigation (Croft et al., 2001;
Smith et al., 2002). In other applications utilizing piezoceramic actuators, the use of charge
or current controlled amplifiers can essentially eliminate hysteresis (Luan and Lee, 1998;
Main et al., 1996). However, this mode of operation can be prohibitively expensive as
compared with the more commonly employed voltage control amplifiers, and current
control is ineffective if maintaining DC offsets as required for numerous applications—
e.g., the x-stage in an AFM must hold a specified position while a sweep is performed in
the y-stage.

In magnetic materials, significant research is focused on the development of
compositions and compounds which maximize performance specifications such as output
strains and blocked forces while minimizing hysteresis. This has motivated the
development of new rare earth transducer compounds, such as Galfenol (Clark et al.,
2000), as well as ferromagnetic shape memory alloy (FSMA) compounds (James and
Wauttig, 1998; O’Handley et al., 2000; Sozinov et al., 2002). However, the materials with the
highest work density metrics still exhibit significant hysteresis and constitutive
nonlinearities which must be accommodated in transducer design. Moreover, for other
technologies including magnetic recording, a high degree of hysteresis is actually required
to provide the history required for the application.

In the class of ferroelastic materials, shape memory alloys (SMA) are being increasingly
considered for civil, aeronautic, aerospace and industrial applications which require
significant passive damping or utilize the high work output densities exhibited by the
materials. Because the energy dissipated by ferroic materials is proportional to the area of
the hysteresis loop, pseudoelastic operating regimes which maximize hysteresis are required
when employing SMA as tendons to attenuate earthquake or wind-induced vibrations in
buildings or as fibers to eliminate vibrations in articulated antennas or membrane
mirrors—see Aizawa et al. (1998), DesRoches and Delemont (2002), Dolce and Cardone
(2001) for recent civil applications and Seelecke (2002) for details regarding the modeling
of hysteresis-induced damping behavior. The utilization of temperature-induced phase
transitions to provide actuator capabilities is under intense investigation in the context of
microelectromechanical systems (MEMS), thin film SMAs, and microactuator applica-
tions since surface area to volume ratios in these geometries promote rapid cooling and
hence high frequency drive capabilities. For example, Ho et al. (1999) report on a thin film
micropump capable of operating at 300 Hz. Additional details regarding thin film SMA
applications can be found in Krulevitch et al. (1996), Massad and Smith (2005) and
discussion regarding the development of SMA-based microgrippers relevant for
microrobotics and microassembly is provided in Kohl and Skrobanek (1998), Reynaerts
and van Brussel (1998). To achieve both the stress-induced damping capabilities and
temperature-induced actuator capabilities of SMA devices, it is necessary to quantify the
inherent hysteresis and constitutive nonlinearities in a manner feasible for transducer
design and real-time control implementation.

Finally, there is an increased focus on the design of hybrid transducers which utilize
complementary properties of constituent materials. For example, the drive characteristics
and 90° phase shift between Terfenol-D and PZT or PMN is being utilized to construct
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hybrid transducers having improved energy efficiencies and frequency bandwidths (Butler
et al., 1990; Janocha and Clephas, 1996). However, the hysteresis and nonlinearities
inherent to the constituent materials must be accommodated to achieve optimal
performance with hybrid designs.

Hence from both the fundamental perspective of material characterization and future
material development, and the practical perspective of transducer design and model-based
control development, it is advantageous to develop unified frameworks for quantifying
hysteresis and material nonlinearities inherent to ferroelectric, ferromagnetic and
ferroelastic materials. Material development and characterization necessitate a high
degree of accuracy whereas the practical requirements of transducer design and real-time
control implementation limit the complexity of models and favor models which can be
efficiently constructed and updated to accommodate changing operating conditions. In
this paper, we employ a multiscale development to provide a unified framework for
quantifying the hysteresis and constitutive nonlinearities inherent to a broad range of
ferroic compounds. The goal is to provide sufficient accuracy for material characterization
while maintaining a complexity level which facilitates transducer and control design in
addition to real-time control implementation.

As summarized in Table 1, ferroelectric, ferromagnetic and ferroelastic materials share a
number of common traits including the presence of multiple domains, which are separated
by domain boundaries or walls, and field-induced phase transitions in the vicinity of the
Curie temperature 7. A unified analysis of these shared properties dates back at least to
the work of Nye (1957) and, in 1970, Aizu presented a unified treatment of certain
symmetry properties of ferroelectric, ferromagnetic and ferroelastic compounds which he
collectively referred to as ferroic compounds (Aizu, 1970). Shared attributes of ferroic
compounds have subsequently been exploited by a number of researchers when
categorizing properties of the materials (Newnham, 1997; Smith and Massad, 2001;
Wadhawan, 2000).

The physical mechanisms which produce hysteresis and constitutive nonlinearities in
ferroelectric, ferromagnetic and ferroelastic compounds differ significantly at the
microscopic scales. In ferroelectric materials, hysteresis is partially attributed to dipole
switching and domain wall losses whereas moment rotation and domain wall losses
produce hysteresis in ferromagnetic compounds. While a number of analogies between
hysteresis mechanisms in ferroelectric and ferromagnetic compounds can be made based
on shared domain properties of the materials, the actual molecular mechanisms and scales
on which domain properties occur, differ substantially. Furthermore, hysteresis in shape

Table 1
Analogies between physical properties of ferroic materials

Ferroelectric Ferromagnetic Ferroelastic

Polarization Magnetization Strain

Electric field Magnetic field Stress

Paraelectric phase Paramagnetic phase Austenite phase
Ferroelectric phase Ferromagnetic phase Martensite phase
Ferroelectric domain walls Bloch or Neel walls Boundaries between variants
Devonshire theory Mean field (Weiss) theory Landau theory

Micromechanical ferroelectric theory Micromagnetic theory Ginzburg-Landau theory
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memory alloys is due to phase transitions between austenite and martensite variants.
Hence the construction of unified energy-based models at microscopic scales is not
considered feasible.

At the lattice, or mesoscopic, and macroscopic scales, however, shared domain and
energy properties can be utilized to construct unified models for a broad range of ferroic
materials. In the first step of the present development, Helmholtz and Gibbs energy
relations are derived at the lattice level and employed in Boltzmann theory to obtain
evolution equations which quantify the local average polarization, magnetization and
strains in ferroelectric, ferromagnetic and ferroelastic materials. For homogeneous, single
crystal compounds, these local relations can be extended throughout the material to obtain
macroscopic constitutive relations which quantify the bulk material behavior. In the
second step of the model development, stochastic homogenization techniques are
employed to incorporate material nonhomogeneities, polycrystallinity, and nonuniform
effective fields found in typical ferroic compounds. The resulting macroscopic models are
low order, and hence efficient to implement, with parameters that can be correlated with
properties of the data. Furthermore, the unified models guarantee the closure of biased
minor loops and enforce the ‘deletion’ property in quasistatic drive regimes with negligible
thermal relaxation, and incorporate various temperature dependencies and relaxation
mechanisms. The resulting unified modeling framework, which has its genesis in the SMA
theory of Achenbach and Miiller (1985), Achenbach (1989), thus quantifies a wide range of
phenomena common to ferroelectric, ferromagnetic and ferroelastic compounds and
pertinent to transducer designs which exploit the unique capabilities of these materials.

To place this framework in perspective, it is useful to compare it with existing energy-
based and phenomenological methodologies used to quantify hysteresis in ferroic
compounds. We refer the reader to Chen and Lynch (1998), Huber et al. (1999), Robert
et al. (2001), Smith and Ounaies (2000) for a summary of nonlinear and hysteresis models
for ferroelectric and piezoelectric compounds, Dapino et al. (2000), Della Torre (1999),
Jiles (1991), Jiles and Atherton (1986), Liorzou et al. (2000), Mayergoyz (1991) for
ferromagnetic materials, and Boyd and Lagoudas (1994), Gao et al. (2000), Huang et al.
(2000), Puglisi and Truskinovsky (2002a,b), Seelecke and Miiller (2004) for an overview of
models for shape memory alloys. We summarize next investigations focused on the
development of unified models for ferroic compounds.

The theory in Smith and Massad (2001) exploits the shared domain structure of ferroic
materials to construct unified hysteresis models. In that development, statistical mechanics
tenets are invoked to first construct anhysteretic models for idealized materials devoid of
pinning sites. Electrostatic, magnetostatic and elastic energy relations are then employed to
quantify the reversible and irreversible energy required to translate domain walls in the
materials. The resulting models are low order but have the disadvantage that it is difficult
to enforce closure of biased minor loops without a priori knowledge of turning points. We
point out that the asymptotic models derived in the present framework through statistical
mechanics principles are the Ising model employed in the theory of Smith and Massad
(2001) to quantify the equilibrium anhysteretic behavior of ferromagnetic and ferroelectric
materials.

A variety of phenomenological techniques have also been developed to construct unified
hysteresis models for ferroic compounds. In the theory developed by Soukhojak and
Chiang (2000), phenomenological principles are used to construct rheological models
which quantify the time and frequency-dependent behavior of a range of ferroic materials.
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Preisach techniques have also been employed for characterizing hysteresis and
nonlinearities in numerous ferroic compounds due to their generality and rigorous
mathematical foundation (Banks et al.,, 1997; Brokate and Sprekels, 1996; Ge and
Jouaneh, 1995; Mayergoyz, 1991; Krasnosel’skii and Pokrovskii, 1989). The generality of
Preisach models also constitutes a weakness in the technique since it is difficult to
incorporate known physics or properties of the data when determining parameters in the
models. As discussed in Della Torre (1999), Liorzou et al. (2000), extensions to classical
Preisach theory are also required when incorporating reversible effects and temperature
and frequency dependencies, and relaxing congruency properties to model the incongruent
behavior exhibited by materials. In Smith and Seelecke (2002), it is illustrated that the
framework presented here provides an energy basis for certain extended Preisach models
with four important differences. (i) The energy derivation yields physical parameters which
can be correlated with properties of the data—this facilitates model construction and
updating to accommodate changing system inputs. (ii) The temperature dependencies and
relaxation mechanisms are incorporated in the basis, or hysterons, rather than in the
densities, measures or parameters—this eliminates the necessity of lookup tables or vector-
valued parameters when employing the models in variable temperature or certain dynamic
regimes. (iii) The model can be constructed with noncongruent kernels and hence does not
need to be modified to achieve the noncongruency exhibited in a number of operating
regimes. (iv) The model automatically incorporates reversibility through the energy
derivation of the hysterons and hence does not require modification to accommodate low
drive regimes.

In Section 2, we develop mesoscopic energy functionals, differential equations
quantifying the evolution of phase fractions, and asymptotic relations characterizing the
average local polarization, magnetization and strains in ferroelectric, ferromagnetic and
ferroelastic compounds. The theory is extended in Section 3 to nonhomogeneous,
polycrystalline compounds exhibiting nonuniform effective fields by considering para-
meters such as coercive fields and relative stresses to be manifestations of underlying
distributions. Attributes of the unified models are then illustrated in Section 4 through
comparison with PZT5A, Terfenol-D, steel and NiTi data as well as prediction of material
behavior.

2. Mesoscopic models

We summarize here the development of mesoscopic models derived through the
construction of appropriate Helmholtz and Gibbs energy relations at the lattice level with
Boltzmann theory used to quantify the probability of achieving various energy states.
When combined with differential equations which quantify temperature changes within the
materials, this yields a coupled set of evolution equations quantifying the local average
polarization, magnetization and strains in ferroelectric, ferromagnetic and ferroelastic
compounds. For homogeneous, single crystal compounds having uniform fields or stresses,
these local relations apply throughout the material and hence provide macroscopic models
which characterize hysteresis and constitutive nonlinearities. These local, mesoscopic
relations are extended in Section 3 to accommodate the effects of polycrystallinity,
material defects, inclusions, nonhomogeneities, and variable effective fields and stresses.
To simplify the discussion, we develop both the mesoscopic and macroscopic polarization,
magnetization and strain relations in the context of piezoceramic, magnetostrictive and
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shape memory compounds. However, the theory is sufficiently general to encompass a
broad range of ferroelectric, ferromagnetic and ferroelastic materials.

To provide a general framework for formulating the unified models, we consider an
order parameter e and external fields ¢ that are thermodynamically conjugate to e. For
ferroelectric, ferromagnetic and ferroelastic materials, natural choices for e are,
respectively, the polarization P, magnetization M, and strains &. The corresponding
external fields ¢ are taken to be the electric field E, magnetic field H, and stresses o. For
temperatures 7, we denote Helmholtz energy functional by (e, T) and Gibbs energy
functional by G(g,e, T).

In the absence of applied fields, the Helmholtz relations provide a natural measure of
energy and, under the assumption of differentiability, thermodynamic equilibria are
provided by the condition

oy

0 |

Oe M
In the presence of an applied field, the Gibbs functional

G((p’ e, T) = !//(ea T) — Qe (2)
is used to quantify the total energy, and equilibrium states are specified by the conditions

oG 3G

—=0, —>0. 3

e B2 ®)

Relation (3) can be interpreted as providing conditions under which the order parameter
adjusts to balance the internal energy with work due to the applied field. As will be noted
in subsequent discussion, conditions (3) also provide asymptotic conditions specifying the
local polarization, magnetization and strains at the lattice level as well as macroscopic
constitutive relations if electromechanical or magnetomechanical coupling is included in
the Gibbs energy relation.

2.1. Piezoceramic materials

Presently employed lead-zirconate—titanate (PZT) compounds are comprised of
PbTi;_,O3 and PbZr,O3; with x chosen to optimize electromechanical coupling. To
simplify the discussion, we focus on PbTiO; to motivate the construction of appropriate
energy relations. At temperatures 7 above the Curie temperature 7, PbTiO; exhibits a
cubic form, whereas it has the tetragonal form depicted in Fig. 2a for T<T7.. A
corresponding potential or Helmholtz energy profile associated with the position of the Ti
cation along the x3 axis is depicted in Fig. 2b. In the presence of an applied field E, the
energy landscape distorts in the manner depicted in Fig. 3. In the absence of thermal
energy, the local minimum associated with the stable equilibrium disappears when the field
reaches the local coercive field value E. and it becomes energetically favorable for the Ti
cation to change configurations. This produces a dipole switch and subsequent hysteresis
in the relation between E and the local average polarization P. Whereas other mechanisms,
including thermal activation, contribute to the hysteresis and constitutive nonlinearities
exhibited by piezoceramic materials, this source of dipole switching helps motivate
appropriate formulations for the Helmholtz and Gibbs energy relations.
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Fig. 2. (a) Tetragonal structure of PbTiO; for T<T, and resulting spontaneous polarization; (b) Helmholtz
energy as a function of Ti position along the x3-axis.
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Fig. 3. (a) Helmholtz energy ¥ and Gibbs energy G for increasing fields E; (b) dependence of the local average
polarization P on the field £ at the lattice level in the presence of thermal activation.

2.1.1. Helmholtz and Gibbs energy relations

Following the development in Smith et al. (2003b), we consider a uniform lattice of
volume 7 and mass v having N cells. We also make the assumption that each cell has two
possible orientations s; = +1 and dipole moment p. We let &, denote the energy required
to reorient a single dipole when the lattice is completely ordered.

The Helmholtz energy for the lattice is

y=U-ST,
where U and S, respectively, denote the internal energy and entropy. As detailed in Smith

et al. (2003b), the combination of mean field theory and classical statistical mechanics
arguments yields the Helmholtz energy relation

DN TkN {P In (P + P

A A & 2
WP.T) = S0 = (P[P + 55 | PIn( 5y

_EhPs _ 2 E,T P+ Py _ b
== [1—(P/P) ]+ 3T, |:P ln(Ps — P) + P In(1 — (P/Ps) )] 4)

) 4+ Py In(l - (P/Ps)z)]
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Here E;, = N®y/VP; is a bias field, T = ®y/k is the Curie temperature (k is Boltzmann’s
constant), and P; = Np/V denotes the saturation polarization. It is illustrated in Smith et
al. (2003b) that  yields a double well potential for T'< T, and a single well potential for
T > T, in accordance with the transition from a ferroelectric phase to a paraelectric phase.

To simplify subsequent implementation for fixed temperature regimes 7' < T, we also
employ the piecewise quadratic Helmholtz relation

%n(P+PR)29 PS—P],

1 2
_W(P - PR) s PZPI)
: i s)

Y(P) = p
E”I(PI — Pr) (FI - PR): |P| < Py

obtained through Taylor expansion of Eq. (4) in neighborhoods of the equilibria. The
parameters Pg and Py, respectively, denote the local polarization value at which a local
minimum of y occurs (see Eq. (1)) and the inflection point. From a physical perspective,
Pgr and n represent the local remanence value and reciprocal of the slope at saturation for
the hysteron depicted in Fig. 3b. Finally, we note that the local coercive field E. is related
to PR, Py and 5 through the relation

E.=n(Pr — Pyp). (6)

From the potential energy relation Ug = —p-E, it follows from Eq. (2) that an
expression for the Gibbs energy is

G(E,P,T) = y(P,T) — EP (7)

for uniaxial lattice structures. The behavior of G for an increasing field and the resulting
local average polarization P are depicted in Fig. 3.

2.1.2. Local average polarization

To quantify P it is necessary to determine the fractions of dipoles x; and x_,
respectively, having positive and negative orientations, the likelihoods p,_ and p_, of
switching from positive to negative, and conversely, and the expected polarization values
(P,) and (P_) associated with positive and negative dipoles. In the absence of thermal
activation, these quantities follow directly from the condition (3) which forms a basis for
subsequent asymptotic relations for P. To incorporate measured relaxation phenomena, it
is necessary to incorporate a balance of the thermal and Gibbs energies through the
Boltzmann relation

W(G) = CeCV/KT ®)

The constant C is chosen to guarantee integration to unity over all admissible inputs and &
again denotes Boltzmann’s constant. Physically, the probability u(G) of achieving an
energy level G is increased for large values of the relative thermal energy kT /V and
diminished for small k7/V. Hence more dipoles will have the energy required to jump
from one stable equilibrium to the other when kT/V is large than when kT /V is small or
in the limiting case when kT/V — 0.
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As detailed in Smith et al. (2003b), the likelihoods p, _ and p_, are given by

—G(E,P\(T),T)V kT 1 —G(E,~P\(T),T)V kT

1 e e
P T T Jragy e CEPDTRTGE P T T IO i ap

)

where the formulation in terms of the inflection points +P; rather than the equilibrium
value Py can be argued either from energy principles or asymptotic analysis. Note that
point evaluation of the density results from consideration of a discrete density associated
with the discrete number N of dipoles or cells. The integral provides a more easily
computed approximation under the assumption of a continuum of dipole values. The
relaxation time  for the material is related to the temperature and reference volume V' of
mass v by the relation

2nvp2/3
T(T) = || T (10)

which can be interpreted as the reciprocal of the frequency at which dipoles attempt jumps.
By integrating the product Pu(G) over all admissible polarization values and evaluating the
integration constant C, it follows that the average polarization values can be expressed as

~ f;lo Pe-GEPDV/KT 4p f:oi[ Pe-GEPYV/KT 4p

(P} = f;f e~ GEPDV/KT qp ° (P) = f;’;‘ e—GEPV/KT qp (In
The evolution of dipole fractions is quantified by the differential equations
Xp=—py_ X4 +p_yx_,
X_=-—p_yX_+py x4, (12)
which can be simplified to
Xp=-—pyxp+p_(1—x4), (13)

through the identity x, + x_ = 1.
With the dipole fractions, transition likelihoods, and average polarization values thus
defined, the average local polarization at the lattice level is given by

P=x,(P.)+x_(P_). (14)

Formulation (14) incorporates thermal relaxation through relation (10) as well as certain
temperature dependencies if the Helmholtz relation (4) is employed. While the use of Eq.
(4) has been illustrated for incorporating the temperature dependence associated with
certain relaxor ferroelectric compounds, more general temperature dependencies can be
incorporated by modifying the piecewise quadratic relation (5) in the manner illustrated in
Section 2.3 for shape memory alloys.

2.1.3. Thermal evolution

To quantify changes in temperature due to convection and conduction to surrounding
media, Joule heating, and dipole switching, we employ a balance of energy to obtain the
evolution equation

CMT(t) = —hQT — Tr(t)] — %Q[T — TeO] + J(t) — [he s + h_%x_]. (15)
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Here ¢, 4, h., 2,/ and ¢, respectively, denote the specific heat for PZT, the mass of the
actuator, a heat transfer coefficient, the surface area of the PZT, the thermal conductivity
of the surrounding medium, and the interval over which conduction occurs (Huang and
Usmani, 1994). The first term on the right-hand side of Eq. (15) quantifies heat exchange
due to convection whereas the second term incorporates potential heat loss or sources due
to conduction. The term J(¢) characterizes temperature changes due to Joule heating. For
certain operating regimes, this can be quantified by the relation

(1)
EA (19

where p¢, h and o7, respectively, denote the average electrical resistivity, thickness of the
PZT, and cross-sectional area of the PZT (Shadowitz, 1975). To incorporate additional
geometric, electromagnetic, or frequency-dependent effects, one can quantify J(¢) either
through experimental measurements or more comprehensive models. We note that the
incorporation of Joule heating mechanisms becomes increasingly important in applications
requiring high drive frequencies.

The final component of Eq. (15) quantifies heat transduction due to dipole switching so
that 4, and &_ are analogous to the specific enthalpies in the corresponding SMA relation
(51). This relation also becomes increasingly significant for high frequency transduction. In
general, validation experiments will be required to establish regimes when this latter
contribution should be retained as well as operating conditions where it can be considered
negligible. Finally, we point out that ¢ and p, are considered as averages and the
specification of phase-dependent components to these coefficients may be required when
quantifying the temperature changes which occur during phase transitions.

J(t) = p°h

2.1.4. Asymptotic polarization relations in the absence of thermal activation

For applications in which relaxation times are considered negligible, or do not constitute
a significant role in transducer behavior, the local average polarization expression can be
simplied significantly by considering the limiting case in which thermal fluctuations about
equilibrium values are eliminated. As detailed in Smith et al. (2003b), the limiting models
can be derived either through formal application of the necessary condition (3) or rigorous
consideration of the limits k7//V — 0 in the definition of the likelihoods p, _,p_, and
average polarization values (Py),(P_). To simplify the discussion, we summarize the
formal arguments here.

For the Helmholtz relation (4), enforcement of condition (3) with e= P and y = F
yields the equilibrium relation

_ E + aP
P(E) = Pgtanh (a(T))’ 17
where
_E, _ET
o= P’ a(T) = P,

for the average local polarization. We note that Eq. (17) is exactly the Ising relation
employed in Smith and Hom (1999) when quantifying the anhysteretic polarization and is
equivalent through first-order terms with the Langevin relations employed in various
ferroelectric and ferromagnetic models. Translates of the form P = P tanh(E £ E;) were
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also employed by Zhang and Rogers (1993), and ridge functions of the form r(x) = tanh(x)
are appropriate for generalized Preisach, or Krasnosel’skii—-Pokrovskii characterizations
(Banks et al., 1997; Krasnosel’skii and Pokrovskii, 1989).

The relation resulting from Eq. (5) is slightly more complicated due to the piecewise
nature of the definition. Enforcement of the necessary condition (3) yields the general
relation

- 1

where 4 =1 for positively oriented dipoles and 4 = —1 for negative orientations. To
specify P more rigorously in terms of initial dipole orientations

E
;_PRa E(O)g_EC:v

[P(E; E, )](0) = g, —E.<E0)<E,, (19)
% + Pr, E)=E.

and transition times
() ={t€(0,T/]| E(t) = —E. or E() = E}, (20)
we employ the Preisach notation

[P(E; Ec, O)0), (1) =9,

E
(PE: E.. (1) = ; — PR, ©(t)#¢¥ and E(max t(¢)) = —E, 1)
§+ Py, 7(¢)#¢ and E(max (7)) = E.,

(e.g., see Banks et al., 1997; Krasnosel’skii and Pokrovskii, 1989; Smith and Seelecke,
2002). The dependence of the local average polarization P on the local coercive
field E. is indicated as a prelude to the stochastic extensions to the theory developed in

Section 3.

2.2. Magnetostrictive materials

Field-induced magnetization changes in ferromagnetic compounds, and accompanying
hysteresis, are due primarily to a combination of two mechanisms: rotation of moments
and losses associated with domain wall motion (Chikazumi, 1997; Cullity, 1972; Jiles,
1991). For highly anisotropic materials, characterization of constitutive nonlinearities and
hysteresis necessarily requires incorporation of the anisotropy energy when computing the
energetic response of the material. For several classes of operating conditions and
materials, however, models based on the restriction of spins or magnetic moments to two
possible orientations, denoted s; = +1, can be developed. From a classical perspective, this
assumption is valid for materials which exhibit uniaxial crystalline anisotropies or
transducers in which uniaxial stresses dominate the crystalline structure. This latter
category includes Terfenol-D transducers in which prestress mechanisms are employed to



58 R.C. Smith et al. | J. Mech. Phys. Solids 54 (2006) 46-85

maintain the rod in compression and to optimize magnetomechanical coupling (Dapino et
al., 2000). From a quantum perspective, the assumption of diametrically opposed spins is
commensurate with the observation that two allowable spin configurations are
orientations parallel and opposite to an applied field.

2.2.1. Helmholtz and Gibbs energies

To construct a mesoscopic Helmholtz energy relation for ferromagnetic materials, we
consider a uniform and homogeneous lattice volume ¥ of mass v comprised of N cells, each
of which is assumed to contain one spin, or magnetic moment, 7 having the orientation
s; = 1. As in the ferroelectric model, we let @, denote the energy required to reorient a
single moment in a completely ordered lattice—the relation between @, and the magnetic
exchange integral ¢ is detailed in Smith et al. (submitted)—and make the assumption that
only adjacent moments interact in accordance with mean field approximation to the Ising
model. As detailed in Smith et al. (submitted), formulation of the Helmholtz energy ¢ =
U — ST in this context yields the relation

v, 1) = )
+% {M 1“(%41_1‘;;) + M In(l = (M/M))|. (22)

where M= Nm/V, T.=®y/k, and H, = N®,/VM,, respectively, denote the
technical saturation magnetization, Curie temperature, and bias field. The initial
assumption that @, is constant implies that H} is constant for a uniform, homogeneous
lattice. This assumption is relaxed in Section 3 where we consider statistically
distributed values of H) to accommodate material nonhomogeneities and the effects of
polycrystallinity. Finally, we note that y yields a single well potential for T>T. and a
double well potential in accordance with the transition from paramagnetic to
ferromagnetic phases.

In Smith et al. (submitted), it is illustrated that Taylor expansion about
the three equilibria can be employed to construct the piecewise quadratic Helmholtz
relation

%W(M—i_MR)Za M< _M17

In(M — My)*, M= M,
2

Y(M) = o
EW(MI —MR)<MI—MR>, M| <M,

(23)

which facilitates implementation in fixed temperature regimes. Here M| and My denote
the inflection point and minimum of y at which local remanence occurs—see Fig. 3 for a
depiction of analogous behavior for ferroelectric materials.

For variable temperature applications, one can employ either Eq. (22) or a modification
of Eq. (23) in which temperature dependence is incorporated in a manner analogous to
that employed in Section 2.3 for shape memory alloys. The former option automatically
includes the ferromagnetic to paramagnetic phase transition whereas the latter offers
advantages from the perspective of implementation.
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Since the magnetostatic energy is given by § = —yym - H, where u, denotes the magnetic
permeability, the uniaxial Gibbs energy can be specified ecither as

G(H3M>T) :lp(M’ T)_:uOMH»
or
GH,M,T)=y(M,T)— MH (24)

by incorporating p, in . We employ Eq. (24) due to its commonality with the general
Gibbs relation (2) which facilitates the development of a unified modeling framework. A
comparison of the Helmholtz relations (4) and (22), the piecewise quadratic relations (5)
and (23), and the Gibbs energy relations (7) and (24) illustrates the commonality in the
formulations for ferroelectric and ferromagnetic compounds.

2.2.2. Average local magnetization

The development of local average magnetization relations is analogous to that for
ferroelectric materials and details are provided in Smith et al. (submitted), Smith et al.
(2003a). For operating regimes in which relaxation effects are considered negligible,
limiting values of the local average magnetization M can be formally obtained from the
necessary condition (3). For the Helmholtz relation (22) derived from statistical mechanics
principles, the condition H = Oy /OM yields

H+ oM
a(T) )

where o = H, /M and a(T) = H,(T)/ M. Relation (25) is an Ising model whose input is
the effective or Weiss field

H.=H + oM. (26)

M= M, tanh( (25)

This relation was employed as the anhysteretic component of the unified models
developed in Smith and Massad (2001). Furthermore, it is illustrated in Smith and
Hom (1999), Smith and Massad (2001) that if one relaxes the constraint that moments have
only the orientations s; = £1 and considers uniformly distributed moments, one obtains the
Langevin relation M = #(H,) = M[coth(H,/a) — a/H,] which agrees with the Ising
relation M = M, tanh(H,/a) through first-order terms—see Chikazumi (1997), Jiles (1991)
for a derivation of the Langevin equation in the context of magnetic materials. The Langevin
model M = M ¥(H,), with H, specified by Eq. (26), is employed when quantifying the
anhysteretic magnetization in the domain wall theory of Jiles and Atherton (1986) as well as
the transducer models based on that theory (Dapino et al., 2000).

The magnetization relation resulting from Eq. (24) in the absence of thermal activation
is elementary in the sense that it is piecewise linear but is complicated by the fact that a
history of dipole switches must be maintained to ascertain which branch of the hysteron is
active. This can be accomplished via the Preisach notation

[M(H; H., O))0), (1) =9,
H

(BECH: H., (1) = ; — Mg, 1(t)#¢ and H(max1(t)) = —H,, 27)
%—i— Mg, (¢)#¥ and H(max(t)) = H,,
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where
%— Mg, HO) —H,
[M(H; H., &))(0) = ¢ & —-H.<H0)<H,, (28)
H

;‘i‘MRa H(0)>Hc

denotes initial moment orientations and the switching times 7(#) are specified by Eq. (20)
with switching occurring at the local coercive field values H. and —H.. Heuristically,
relation (27) has the form

M= %H + AMg (29)
where 4 = £1 is used to delineate the upper and lower branches of the hysteron.

To incorporate thermal activation and relaxation mechanisms—e.g., when modeling
magnetic after-effects of the type discussed in Chapter 20 of Chikazumi (1997)—it is
necessary to quantify the evolution of the moments fractions x, and x_ having positive
and negative spins. The notation and development is analogous to that presented in
Section 2.1.2 for ferroelectric materials and details regarding the development of
ferromagnetic materials can be found in Smith et al. (submitted, 2003a).

Since the probability of achieving an energy state G is given by Eq. (8), the transition
likelihoods p,_ and p__ are given by

1 e—GUH,MLT)V /KT 1 e—GH M)V /kT

P =) [ e samnviT qp P+

30
g(T) f__olglle—G(H,M,T)V/deM’ (30)

where the relaxation time 7 is specified by Eq. (10). The expected magnetization values
(M) and (M _), due to positively and negatively oriented moments, are specified by

f;lol Me—GHMDV/ET 4 pr f:oﬁjl Me—GUEMV/KT 4 o1
(M) = [or e GHMIV/KT g7 ° - [~ e=Gur MV KT § M
1 —o0

(M_) , (31)
which are analogous to the ferroelectric relations (11). Finally the average local
magnetization M, which incorporates thermal relaxation mechanisms, is given by

M o= xo (M) +x_(M_), (32)

where the moment fraction x, is specified by the differential (13) and x_ =1 —x,. In
Smith et al. (submitted), it is illustrated that relations (27) for materials with negligible
relaxation characteristics can also be rigorously derived from Egs. (30)—~(32) by considering
the limiting case kT /V — 0.

2.2.3. Thermal evolution

Temperature changes in magnetostrictive transducer materials are due to several
mechanisms including ohmic heating in the solenoid, which is transmitted to the Terfenol-
D rod through conduction, Joule heating due to eddy currents, and potential internal
heating due to the reorientation of moments. To accommodate future designs, we also
incorporate possible convection mechanisms analogous to those considered for piezo-
ceramic and shape memory alloy transducers.
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To model the temperature transition in the magnetic material, we employ the notation of
Section 2.1.3 and let ¢, A, .#,Q,,¢ and Tg(f), respectively, denote the specific heat, a
convection coefficient, the mass of the Terfenol-D rod, the surface area of the material, the
thermal conductivity of the solenoid, the path length of conduction, and the time varying
temperature of the adjacent environment. An energy balance then yields the differential
equation

cMT(t) = —Q[he + 20T — Te(T)] + J(t) — [hyxy +h_x_] (33)

governing the temperature evolution. A comparison of Eq. (33) with its ferroelectric
counterpart (15) reveals that the general temperature relations are identical.

To quantify the conductive and convective contributions, it is necessary to specify T g(¢)
either experimentally or through additional models. For example, a fully coupled thermal
model for a Terfenol-D transducer would require the measurement or characterization of
ohmic heating in the solenoid and heat transmission through the device to specify T'g(7).
Similarly, the Joule component J(¢) can be determined either empirically or though eddy
current relations. Finally, the last term in Eq. (33) quantifies potential changes in
temperature due to the reorientation of moments. The relevance of this term for specific
operating conditions should be established through validation experiments.

2.3. Shape memory alloys

Shape memory alloys exhibit a number of unique features which are being targeted for
present and projected applications (Massad and Smith, 2005; Seelecke and Miiller, 2004;
Shaw et al., 2003). Following a plastic deformation at low temperatures, the materials
will recover their original shape upon the application of heat—this constitutes the shape
memory effect which gives the materials their name. At higher temperatures, reversible
deformations up to 10% can be obtained under nearly constant loads which gives
the materials superelastic capabilities. These deformation properties are commonly
termed quasiplastic at low temperatures and pseudoelastic at higher temperatures
with the latter illustrated by the SMA data plotted in Fig. 1c. All of these characteristics
are due to temperature or load induced phase transformations at the lattice level and
it is at this scale that we initiate model development. Most initial applications utilizing
SMA compounds were focused on polycrystalline NiTi wires whereas NiTi films are
under present investigation to support MEMs applications and to improve response
times through increased surface to volume ratios. For uniaxial loads, uniaxial models
suffice for both regimes and are the focus of this discussion. Hence, we focus on
characterizing the evolution of austenite A and the martensite twins M™ and M_ in SMA
lattice layers.

Following the theory developed in Massad and Smith (2005), Papenfufl and
Seelecke (1999), Seelecke (submitted), Seelecke and Miiller (2004), we treat a lattice
volume V of mass v as the fundamental element in the model and let xa(f), x,(¢) and
x_(1), respectively, denote the volume fraction of A, Mt and M~ layers in the SMA.
The phase fractions constitute internal variables which necessarily satisfy the conservation
relation

XA +xr+x_=1 (34)
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over all time. To consolidate notation, we let « generically refer to the A, M™ and M~
variants so that relation (34) can be reformulated as

D> x()=1.

2.3.1. Helmholtz and Gibbs energies

The formulation of Helmholtz and Gibbs energy relations is common to a number of
SMA theories (e.g., see Massad and Smith, 2005; Seelecke and Miiller, 2004; Shaw et al.,
2003 and the references cited therein), and differences between the theories arise in the
manner through which energy relations are defined and used to construct macroscopic
models. We employ the theory of Massad and Smith (2005), Seclecke and Miiller (2004) to
construct C; energy relations based on piecewise quadratic functions which characterize
stable equilibria corresponding to the A, M* and M~ phases.

As illustrated in Fig. 4, the fundamental order parameter is the shear strain ¢ which has
the value ¢ = 0 for austenite and the equilibrium value ¢ = &7 for martensite in a stress-free
state. The linear moduli for martensite and austenite are, respectively, denoted by Y and
Y a. To model the transition from stability of martensite variants at low temperatures to
stability of the austenite phase at high temperatures, we employ the C; Helmholtz energy
relation

Doty a< —om(T),
_@(5 +6(D)? +Yo(T), —em(T)<e< — ea(T),
Ve )= § 506+ AR(D), A <an(D), (2
BT (T 4T, () <o<an (T,
D, e o (T),

The temperature-dependent inflection points ey (7)), ea(7), and their negatives, delineate
the transition from convex regions, which represent stable austenite and martensite phases,
to concave regions representing unstable states. The maxima of the concave parabolae
occur at the temperature-dependent points (£e&y(7), (7)), and the parameter Ey(7) is
chosen to ensure C; continuity. As depicted in Fig. 5, the austenite minimum has the
height

AB(T) = Pa(T) — pm(T), (36)

M~ A M*

Fig. 4. Lattice element exhibiting the martensite M~, M* and austenite A equilibrium configurations.
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Fig. 5. (a) Piecewise quadratic Helmholtz energy (35) for fixed temperature 77, dashed segments represent
concave, unstable regions; (b) Helmholtz energy as a function of 7.

where
BAT) = cT — Tr) + ur — Ty 37

represent chemical (nonelastic) free energies (Massad and Smith, 2005; Seelecke and
Miiller, 2004; Shaw et al., 2003). Here ¢,,u, and Tg, respectively, denote specific heat
capacities multiplied by the material density, phase-dependent internal energy constants,
and the temperature of the reference state from which energies are computed. Furthermore,

Sy =1¢y ln(T/TR) + 1R (38)

are specific entropies and 5, are phase-dependent entropy constants.

The Helmholtz relation (35) quantifies the energy for a layer in the absence of applied
loads. To incorporate distortions in the energy landscape due to applied stresses o, we
employ the Gibbs relation

G(o,e,T) =Y, T) — eo (39)

resulting from Eq. (3). In Fig. 6a, we illustrate the Gibbs energy for a lattice volume V at a
fixed temperature 7= T 5 chosen so that the material exhibits the austenite phase for
o = 0. As o is increased, the landscape distorts until the critical stress o4 at which point the
stable austenite equilibrium ceases to be a local minimum and M™ becomes the stable
phase. It will remain such until the stress is decreased to a second critical value ay. Here
the local martensite minimum disappears and the material returns to the austenite phase.

2.3.2. Local average stress—strain relations

To quantify the pseudoelastic load deformation behavior which accompanies the
increase in stress through the critical value 65 and subsequent decrease through the second
critical value oy, one can quantify the evolution of associated phase fractions in the
absence or presence of thermal activation in a manner analogous to that summarized
previously for ferroelectric and ferromagnetic compounds.

For reference volumes J in which thermal activation is negligible, the local average
stress—strain behavior is quantified solely by necessary conditions associated with the
Gibbs energy G given by Eq. (39). From Eq. (2), it follows that the conditions

6_, ¥

— = 4
% 0, >0, (40)
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Fig. 6. (a) Gibbs energy (39) for a fixed temperature 7 in the austenite range with ¢ =0, 0 = g4 and ¢ = ou;
(b) local stress—strain relation produced by the equilibrium condition (3) for fixed temperature 7 and negligible
relative thermal energy KT/ V; (c) local stress—strain relation in the presence of relative thermal energy kT /V for
fixed 7.

must hold at stable equilibria which yields the critical stress values:
oa(T) = Yaea(T),
om(T) = Ymlem(T) — er]. (41)

For material characterization, it is advantageous to define the temperature-dependent
parameters

oT) = oa(T) — om(T) (42)

which, it will be later illustrated, can be estimated from measured data. Due to the
quadratic definition of the Gibbs energy, the local stress—strain behavior is linear in the
absence of thermal activation, as depicted in Fig. 6b. To incorporate the switching history,
we employ the Preisach notation

[(0:9,91(0), (1) =4,

o
[E(0:6. E)(1) = Y—M + &7, (1) # ¥ and a(max 1(¢)) = oa, 43)
Yi’ 1(¢)#% and o(max 1(f)) = oy,
A

to quantify the local average strains due to the positive applied loads ¢ (similar expressions
hold for compressive loads). Analogous to the ferroelectric definitions (19) and (20) and
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ferromagnetic definition (28),

7, o(0) <o,
Ya
[6(0: 0, 9)1(0) = { & om <a(0)<oa, (44)
7 0)=0
YM + er, 0( Z0A
and
©(t) = {t € (0, Tf]| a(t) = am or o(t) = o}, (45)

respectively, denote the initial phase configuration and switching times.

To quantify the local average strains € for reference volumes in which thermal activation
is significant, it is necessary to balance the Gibbs energy G with the relative thermal energy
kT/V through the Boltzmann relation (8). Physically, large values of kT /V mean that
with higher probability, layers will achieve the energy required to exit a local minimum
before the stress values oa or oy are reached. This produces the gradual transitions and
decreased transition stress values depicted in Fig. 6c¢.

As detailed in Massad and Smith (2005), Seelecke (submitted), Seelecke and Miiller
(2004), the likelihood p,_.. that austenite will transform to M* and the likelihoods p, that
M* will transform either to austenite or the other martensite variant are given by

kT e—Goken TV /KT
Pas(0,T) = 2/3 —G(oe. )V /KT dp°
2mv V23 [, e Gl de

kT e~ GloEem. )V /KT
—G(o.e, k H

2y V23 fXMie Glo.e VKT dg
where ya(T) = (—ea(T), ea(T)), ym+(T) = (em(T),00) and yp-(T) = (—o0, —em(T)), re-

spectively, denote regions over which austenite, M and M~ are stable. Moreover, the
expected strains due to austenite and M+ variants are given by

p:l:(a’ T) =

(46)

<m=/smm@mm

M=

<m=/am%&mm

v+

wm=/ww@amm, @)
XA

where u is given in Eq. (8) and the Gibbs energy is specified in Eq. (39). The evolution of
phase fractions is governed by the rate laws

X () = pa-xa(t) = p_x_(1),

Xy (1) = pA+xA(t) - p+x+(t)’

XA() =p_x_(1) = pa_Xa(1) + P x4() = pa XA (1), (43)

which can be reduced to

X () = =(p— +pa)x—() = pa-x4() +Pa_s
X1 () = =1 + Pa)X () = par X (D) + Pass (49)
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through the conservation relation (34). To compute the local average strain for the
reference volume, we make the assumption that thermal strains are small compared to
mechanical strains and retain only the latter component. As discussed in Massad and
Smith (2005), this assumption is valid for bulk materials but may need to be modified for
SMA thin films. Under this assumption, the local average strains, in regimes for which
thermal activation or relaxation mechanisms are significant, are given by

&= (e_)X_ + (e4)X4 + (ea)Xa, (50)

where x_,x, are specified by Eq. (49), xo =1 —x, —x_, and (e_),(e;) and (ep) are
defined in Eq. (47).

2.3.3. Thermal evolution

The quantification of thermal processes is analogous to that considered in Eq. (15) for
ferroelectric compounds and Eq. (33) for ferromagnetic materials, and includes convective
and conductive mechanisms, Joule heating and heat transduction due to phase transitions.
As in Sections 2.1.3 and 2.2.3, we let hc, T, pS, ¢y, Q, o/, 4, A and ¢, respectively, denote
the convection coefficient, temperature of the surrounding environment, phase-dependent
electric resistivity, phase-dependent specific heat, SMA surface area, SMA cross-sectional
area, the mass of the SMA, the thermal conductivity of the surrounding medium and the
length of any conduction paths. An energy balance then yields the differential equation

MEDT(0) = —Qlhe + 2/ OIT — T )] +J(0) = Y huis, (51)

which quantified the temperature evolution (see Massad and Smith, 2005; Seelecke,
submitted; Seelecke and Miiller, 2004). The first term on the right-hand side characterizes
heat exchanged with the surrounding environment through convection and conduction in a
manner analogous to Eqgs. (15) and (33) for ferroelectric and ferromagnetic materials. For
an input current /(¢), the relation

2
0 =50,

where §°(f) = >, pSx,(2) is the average resistivity per unit length, quantifies heat generated
through Joule heating. The final term in Eq. (52) accounts for heat generated or lost during
phase transformations. As discussed in Massad and Smith (2005), the specific enthalpies 4,
have the form

(52)

hy =g, + Ts,,

where g, are local minima of the Gibbs relation (39) and s, denotes the specific entropies
defined in Eq. (38). Finally, the average specific heat is given by &) = >, ¢,x,(f). We note
that ¢ and p° are assumed to be constant in the ferroelectric and ferromagnetic relations
whereas their time dependence in Egs. (51) and (52) reflects their dependence on evolving
phase distributions in shape memory alloys.

2.4. Unified mesoscopic models

In Sections 2.1-2.3, we summarized the development of nonlinear hysteresis models for
ferroelectric, ferromagnetic and ferroelastic compounds, respectively. We discuss here the
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unified nature of the modeling framework and indicate the degree to which the three
models can be consolidated through common notation.

As noted in the introduction to this section, the polarization P, magnetization M, and
strain ¢ can all be represented by the order parameter e whereas the electric field E,
magnetic field H and stress o can be, respectively, represented by the external field ¢ which
is thermodynamically conjugate to e. The definitions of subscripted parameters follow the
conventions established in previous subsections (e.g., e; = Py or M). In all definitions, the
Boltzmann probability u(G) is specified by Eq. (8) and domains of integration are defined
by y; = (e1,00), 7 = (=00, —e1), 1o = (—&a, éa), 1w+ = (em,00) and - = (—00, —em).

By employing the order parameter, conjugate fields, and appropriate parameters, the
magnetization and polarization models can be completely unified in the absence of phase
transitions. The strain model for ferroelastic compounds falls within the same modeling
framework but some individual definitions differ slightly due to the inherent phase
transitions. While notation can be established to formulate all three models in terms of
unified definitions and expressions, the required generality obscures rather than clarifies
the framework so we omit it here. Finally, we note that the unified mesoscopic models
summarized here represent only the fundamental theory and a number of generalizations
to this theory are discussed in previous subsections.

2.4.1. Ferroelectric and ferromagnetic materials
Helmholtz and Gibbs energy relations:

e T) = L5511 (efeny] + 2T [e In (” eS> ey In(l = (/e

2 2T, es—e
%17(6 + ek)z; €< - @[,
2
%7’](6‘ - eR) 5 €>€],

Yle) =
! (e1 —er) ¢ e le|<e
3 nier R e R /> I,
G(‘P» e, T) = lp(es T) — €.
Mesoscopic model-no relaxation mechanisms:
[e(@; @, DN0), (1) =9,

(P e
@0, =4 n & 1(1)# ¥ and p(max ©(1)) = —¢,

%+ er, w(0)#0 and p(max (1)) = o,
?_er, pO)< — g,
n

[e(¢; @, O]0) = ¢ & —p.<p(0) <o,

+er, @0)=0,

(1) ={t € (0, Tr]| (2) = — . or (1) = @.}.
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Mesoscopic model—with relaxation mechanisms:
e=xy(ey) +x_(e),

(es) = / eu(Glp, e, T)) de,

1+
Xy =—pixp+p_ (I —xy),
x_=1-—xg,
= G(p,xer, T)).
P+ f(T) ,LL( ((Pn e, ))

Thermal evolution:

eMT(1) = =Qlhe + A/ O[T — Te()] + J(1) = > _ hyX,.

2.4.2. Ferroelastic materials—austenite and martensite phases
Helmholtz and Gibbs energy relations:

%(eJreT)z, e< —em(7),

3 @(8 +eo(T)? + Yo(T), —em(T)<e< —ex(T),
S T) = %ez + AB(T), le|] <ea(T),

3 @(e —eo(T) + Yo(T), ea(T)<e<em(T),

%(3 —er), ezem(T),

Gg.e,T) = (e, T) - eq.
Mesoscopic model—no relaxation mechanisms.

[e(@; ¢, ON0), (1) =0,
®

B 0o O = Ty T TOFand pmaxz(0) = oy,
Y%, (1) #9 and p(max (1) = ¢,
%, P(0)< oy,

[e(@; 9, DIO0) = § © P <@(0) <@y,

Yi +er, @0)=,,
M

(1) = {t € (0, Tr]| (1) = @y Or @(1) = @4}
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Mesoscopic model—with relaxation mechanisms:
€= xq(eq) + x_(e_) + xalea),

(es) // aulGlo.e. e fen) /y entGip.e. e
X () =—=p_+pa)x_ () —pa_x (D) +pa_,
X () = _(p+ +pA+)X+(l) —pA+X_(Z) +Pats
xa=1—-—xy —x_,
1

H(G((P, :teMa T))7 Pat+ = WT)#(G((P) :l:eAa T))

TTm

Thermal evolution:

MET(t) = =Qlhe + /O[T = Te(D] + J(1) = > hys.

2.5. Macroscopic models for homogeneous, single crystal compounds

The hysteresis models in Sections 2.1-2.3 were all developed at the lattice level under the
assumption of isotropic, homogeneous material properties throughout the reference
volume V. This implies that the weighted exchange energy @, employed in the Helmholtz
relations (4) and (22) is constant which in turn implies that the respective bias fields
E,=N®y/VP, and H, = N®y/VMs and parameters o= E;/P; and o= H;/Ms;,
respectively, employed in Egs. (17) and (25) are constant. Since £, = E 4+ aP and H, =
H + oM represent effective fields, the assumption of uniform lattice properties and
homogeneous exchange energy relations implies constant effective fields throughout V.

For isotropic, homogeneous, single crystal materials, the local average models (14), (17)
or (19) for P, (25), (29) or (32) for M, and (43) or (50) for & can be extended throughout the
compounds to provide bulk or macroscopic constitutive relations. Hence they can be
employed to quantify single crystal behavior of the type experimentally measured for the
ferroelectric material BaTiOj3 (e.g., see Moulson and Herbert, 1990, p. 76) and the shape
memory alloy CuZnAl (Smith and Massad, 2001).

The local relations do not, however, accurately quantify the gradual transitions and pre-
remanent switching characteristic of nonhomogeneous, polycrystalline compounds with
nonuniform effective fields. In the next section, we employ the local average polarization,
magnetization and strain relations as kernels when developing stochastic homogenization
techniques to incorporate the variability inherent to the majority of ferroic compounds.

3. Macroscopic models for nonhomogeneous polycrystalline compounds

The mesoscopic models developed in Section 2 can be directly employed when
quantifying the polarization and stress-induced strains in certain single crystal ferroelectric
and ferroelastic compounds as well as the magnetization in some uniaxial wires and
annealed toroidal specimens (Craik and Tebble, 1965). However, the transitions provided
by these local models are too steep to accurately characterize hysteresis in general ferroic
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materials due to variations in the free energy relations produced by material, stress and
field nonhomogeneities, nonuniform lattice variations across grain boundaries, and stress
and crystalline anisotropies. The introduction of these material attributes into the energy
relations requires analysis similar to that employed in micromagnetic models (Brown,
1962; DeSimone and James, 2002; James and Wuttig, 1998) or micromechanical theory
Goo and Lexcellent (1998) and typically produces models whose complexity precludes
transducer design or real-time control implementation. Alternatively, one can employ local
energy relations as kernels from which low-order macroscopic models be derived either
through homogenization techniques or the determination of bulk effective parameters
through stochastic or empirical means. In this section, we consider certain parameters in
the local energy-based relations to be stochastically distributed to reflect variations in the
lattice, grain orientations, or exchange energies. This yields low-order macroscopic models
in which the majority of parameters can be correlated with measured properties of
experimental data. As will be illustrated in Section 4, the models accurately characterize
both major and biased minor loop data for a wide range of ferroic compounds.

3.1. Ferroelectric materials

We consider first the construction of macroscopic models for ferroelectric compounds.
As illustrated in Fig. 7, variations in the lattice due to material nonhomogeneities,
impurities, grain boundaries, or polycrystallinity, are manifested as variation in the
Helmholtz and Gibbs energies which in turn produce a distribution of fundamental
hysterons or hysteresis kernels. To incorporate this variability in a manner which facilitates
the construction of low-order macroscopic models, we consider the local coercive fields E.,
given by Eq. (6), to be manifestations of an underlying distribution rather than fixed values
as assumed for single crystals with uniform lattices. To enforce the physical constraint
E.>0, we assume that variations in E. can be modeled by a lognormal distribution with
the density

Vi(E) = ¢ e In(E/E)/ 2T (53)
It is noted in Smith et al. (2003b) that if the constant ¢ is small compared with E., the mean
and variance of the distribution have the approximate values

(E.)~E,, ¢=2E.c. (54)

The second extension of the local average relations (14), (18) or (21) is the consideration
of effective fields in the material. As indicated in Anderson (1964), Mitsui et al. (1976), the
applied field E in ferroelectric materials is augmented by interaction fields E7 produced by
neighboring dipoles which produces nonhomogenecous effective fields £, = E + E] in the
materials. This produces deviations about the applied field which can produce switching in
advance of the remanence point. To incorporate these variations, we consider the
interaction field to be normally distributed and have the density

Vz(El) = CzC_EIZ/b. (55)

The macroscopic polarization model combines densities (53) and (55) to yield

[P(E))(1) = C /0 ) / CIBE + By, Eo, ))(1)e-F e MESENT 4p 4, (56)
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Fig. 7. (a) Nonuniform lattice and polycrystalline structure of PZT; (b) Helmholtz energies associated with lattice
structures (i) and (ii); (c) variations in hysteresis kernels due to differing energy profiles.

where P is specified by Eqgs. (14), (18) or (21) and ¢ denotes the initial distribution of
dipoles. Discussion concerning the incorporation of lattice variations and variable effective
fields in the Ising relation (16) as well as details regarding the approximation of the
integrals and implementation of the model are provided in Smith et al. (2003b).

We note that while the polarization model (56) does incorporate relaxation mechanisms,
it does not incorporate dynamic elastic effects and hence should be employed in low
frequency regimes. Initial extensions to the free energy relations and the resulting
constitutive relations required for constructing fully dynamic models have been
investigated in Smith et al. (2002). Finally, we note that the choice of the lognormal and
normal densities (53) and (55) is based on their mathematical properties rather than a
priori physical arguments. The estimation of general densities, which reflect the measured
physical properties of a given material are reported in Smith et al. (2005).

3.2. Ferromagnetic materials

To accommodate material nonhomogeneities, polycrystallinity and nonuniform
effective fields in ferromagnetic materials, we employ lattice and field distributions
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analogous to their ferroelectric counterparts. Lattice variations can be modeled by
assuming that local magnetic coercive fields H. are manifestations of an underlying
distribution which, for the models presented here, we assume to have the lognormal
density

vi(H.) = ¢ e InHe/Ho) /2 (57)

It is noted in Smith and Seelecke (2002), where the present modeling framework is used to
establish an energy basis for Preisach models, that lognormal densities play a fundamental
role in Preisach theory for magnetic materials due to the natural manner through which
they enforce positivity in parameter values (Della Torre, 1999).

To provide additional physical motivation regarding assumed effective field variability
and to relate this analysis to previous models, we consider first the local magnetization
relation (25), derived from statistical mechanics tenets, with effective fields H, = H + oM.
As noted in Section 2, the mean field parameter o is given by

H, N,
o =

=—, 58
My VM: ©8)

where @, is the energy required to reorient a single moment in an ordered lattice.
Furthermore, it is illustrated in Smith et al. (submitted) that

Py =207, (59)

where ¢ is the classical exchange integral and ¢ denotes the number of neighbors adjacent
to a site.

It is implicitly assumed in the mesoscopic theory yielding M that ¢, and hence @y, is
constant. Thus o in the effective field H, = H + aM 1is constant, as assumed in the
macroscopic hysteresis models developed in Jiles (1991), Jiles and Atherton (1986).
However, for nonhomogeneous, polycrystalline materials, it is more reasonable to assume
that the exchange integral _¢ is variable rather than constant. At the quantum level, this
variability can be incorporated by modeling the overlap of electron wave functions
whereas at the macroscopic level, we can incorporate this variability by employing effective
fields

H, = H + oM, (60)

where o satisfies an underlying distribution. To avoid the implicit dependence on M
afforded by Eq. (60), one can alternatively model or estimate the distribution of the
interaction field Hy = oM, and it is this approach that we employ here.

The assumption that the interaction field is normally distributed yields the density

Vz(H]) = C‘QG_H%/}7 (61)

and macroscopic model
[} ) — R
e = € [ [ G+ e e e T
0 —00

= C/OO /°° v(He, HN[M(H + Hy, H,, ©)|(1) dH dH, 62)
0 —00

for the bulk magnetization M. The kernel, or fundamental hysteron, M is given by Egs.
(27), (29) or (32) and ¢ quantifies the initial moment orientation. As with the ferroelectric
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model, the underlying assumption of lognormal and normal densities for H, and Hy can be
avoided through the estimation of a general density v through techniques analogous to
those employed in Shirley and Venkataraman (2003), Smith et al. (2005), Tan et al. (2001).

Details regarding the formulation and implementation of Eq. (63) can be found in Smith
et al. (2003a, submitted). We note that because the given formulation does not incorporate
eddy current losses, it should be restricted to low frequency regimes or transducer
configurations which minimize eddy current losses.

3.3. Ferroelastic materials

The effects of polycrystallinity, material nonhomogeneities, and lattice variations across
grain boundaries in ferroelastic materials can be incorporated by considering stochastic
distributions of the interaction stress o1, and hence the effective stress o, = ¢ + o1, and
either the transformation stress o or relative stress 6 = oo — oM given by Eq. (43).
Because g4 >0\, as depicted in Fig. 6, variability in é can be incorporated through the
assumption that ¢ is lognormally distributed with the density function

v(8) = clef[ln(é/g)/Zc]z (63)

as detailed in Massad and Smith (2005). Furthermore, it is illustrated in Seelecke and
Heintze (Preprint), as well as the example of Section 4.3, that for certain ferroelastic
compounds, the Laplace relation

1 - ,
non) = 5ol (64)

can be employed to accurately characterize the distribution of ¢5. Two appropriate choices
for the underlying interaction field distribution are the normal density relation

va(o1) = cre 01/ (65)

or the Laplace relation
|

— _ alal/b

va(or) 2be . (66)
For densities (63) and (65), this yields the macroscopic relation
[e(a, D)(1) = C / / [&(c + 01,8, E)](£)e71/Pe0O/D/2F 45, 45 (67)
0 —00

quantifying bulk strains due to input stresses and evolving temperatures. The ferroelastic

kernel z is given by Eq. (43) or (50) and the multiplicative constant is simply C = ¢; - ¢;.
The choice of the Laplace densities (64) and (66) yields the analogous relation

(TN =€ [ [ o+ 0.0 106 doydo (68)
0 —00
for e.
3.4. Unified macroscopic models

In Section 2.4, we demonstrated that by employing a general order parameter e = P, M
or ¢ and conjugate field ¢ = E, H or ¢, mesoscopic models characterizing hysteresis in
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ferroelectric, ferromagnetic and ferroelastic materials could be consolidated to provide a
unified, energy-based framework for quantifying hysteresis at the lattice level in ferroic
compounds. Here we employ these lattice-level relations as kernels to construct a unified
macroscopic framework for modeling hysteresis and constitutive nonlinearities in bulk
ferroic materials. This framework can subsequently be employed for material character-
ization, hybrid transducer design, and unified control design for systems employing
ferroelectric, ferromagnetic or ferroelastic actuators and sensors.

We let ¢, = E., H. or ¢ denote general coercive or relative fields and let ¢; = Ey, Hy or
o1 denote interaction fields. We also let ¢ = P, M or & denote the local average polarization,
magnetization, and strain, respectively, defined in Eqs. (14) or (21), (27) or (32), and (43) or
(50), with general relations for e summarized in Section 2.4. Initial dipole, moment and
strain configurations are specified by ¢&.

The hysteresis and constitutive nonlinearities inherent to ferroic compounds can then be
quantified by the general relation

[e(@)]() = C /0 / (0 + 91, 9o, (D)0 Pe 0SB dop i, (69)

where C,b, ¢, and ¢ are material-dependent parameters. If additional generality is
required, one can employ the model

e(@)(1) = C /0 / W@e PNED + P12 0 (1) dpy dope, (70)

where v is a general density to be estimated through a least squares fit to data or direct
solution techniques analogous to those developed for Preisach models (Shirley and
Venkataraman, 2003). As indicated in previous discussion, the constitutive models
incorporate relaxation mechanisms but do not incorporate general dynamic effects. Hence
Eqgs. (69) and (70) should be employed in low frequency regimes or modes of operation for
which dynamic effects are minimal.

4. Material and device characterization

To illustrate the performance of the unified modeling framework, we consider the
characterization of quasistatic and rate-dependent hysteresis and constitutive nonlinea-
rities in PZT5A, Terfenol-D, steel and NiTi. A fundamental step in the model construction
entails the estimation of model parameters and we discuss the manner through which
initial parameter estimates can be obtained using properties of the data.

4.1. Model fit and predictions for PZT5A

We consider first the characterization of the hysteretic E-P relation for PZT5A. Data
was collected from a 1.7cm x 0.635cm x 0.0381cm PZT wafer at 200 mHz with peak
voltages ranging from 600 to 1600 V—corresponding field values can be computed using
the relation E = ¥ /h where & = 3.81 x 107*m denotes the thickness of the wafer—as
shown in Fig. 8. The low drive frequency yielded approximately isothermal operating
conditions so it was not necessary to incorporate temperature changes through the
evolution equation (15).
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Fig. 8. PZT5A data (— — —) and model predictions (——) provided by Eq. (56) with the kernel P specified by
Eq. (21). Abscissas: electric field (MV/m), ordinates: polarization (C/m?).

The field-polarization relation is characterized using model (56) with the kernel P
specified by Eq. (21) since the focus here is on the quantification of multiple drive levels
rather than measurement and characterization of relaxation mechanisms. We point out
that similar results have been obtained with the kernel (14) which retains the activation
energy mechanisms required to resolve relaxation effects. Regardless of kernel,
implementation of Eq. (56) requires the approximation of the integrals. This was
accomplished using composite Gaussian quadrature over a truncated range of integration
chosen to accommodate the decay exhibited by the densities fand /. As illustrated in Smith
et al. (2003b), where details regarding the implementation of the model are provided,
convergence was obtained for both integrals using a 4 point Gaussian rule over a
composite grid having 20 divisions.

To construct the model, the parameters Pg,#,b, E.,c and C must be estimated using
attributes of the data. For the piecewise linear kernel P given by Eq. (21), Pr and C both
have the effect of scaling the polarization for a given field input. Hence they can be
combined and initially chosen to obtain correct saturation behavior. The slope of the
kernel scales through the stochastic homogenization process so measurements of the
reciprocal slope O0E/OP provide initial estimates for 5. From Eq. (54), it follows that an
initial estimate for E. is provided by the measured coercive field whereas small values of ¢
are required when characterizing data with a steep transition through coercivity since little
variability is exhibited about the mean value E.. Finally, the parameter b quantifies the
variance in the effective field which determines, in part, the degree to which switching
occurs before remanence. Materials with nearly linear E-P relations at remanence yield
small values of b whereas large values are required to accommodate significant switching
before remanence.

The coercive field for the 1600V data is 1.2 x 10° V/m and the slope after reversal at
saturation is 3.6 x 10%, and these two values were used as initial estimates for E. and 7. A



76 R.C. Smith et al. | J. Mech. Phys. Solids 54 (2006) 46-85

least squares fit to the 1600V data was used to obtain the parameter values Pr =
0.04C/m?, E.=0.866010 x 10°V/m, 5 =9.5x 10%, ¢=04272V?/m?, b= 1.9754x
lO”Vz/mz, C =17.9926 x 107'? yielding the model fit illustrated in the final plot of
Fig. 8. The model with these same values was then used to predict the E-P relations for 600,
800 and 1000 V inputs. The accuracy of both the high drive level fit and intermediate drive
level predictions and the physical nature of parameters attests to the advantages provided
by combining an energy-based kernel with stochastic homogenization techniques to
accommodate material nonhomogeneities. Further examples illustrating the predictive
capabilities of the model for PZT5H and PZT4 compounds, as well as numerical examples
illustrating the enforced closure of multiply nested biased minor loops, can be found in
Smith et al. (2003b).

We point out that for other materials and operating regimes, the use of the a priori
density choices (53) and (55) may not yield the accuracy achieved here. For such cases, the
identification of general densities v; and v, using the techniques discussed in Smith et al.
(2005) can provide additional accuracy.

4.2. Model fit and predictions for Terfenol-D

To illustrate the ferromagnetic component of the framework as well as the capability of
the model to guarantee closure of biased minor loops in quasistatic operating regimes, we
characterize the H-M relation for Terfenol-D employed in a prototypical actuator design.
As illustrated in Fig. 9 and detailed in Dapino et al. (2000), Terfenol-D transducers
employed for both research development and commercial applications are comprised of a
Terfenol-D rod, a surrounding wound wire solenoid, a biasing permanent magnet, and
prestress mechanisms. Data collected from the Terfenol-D transducer at 0.2 Hz under zero
prestress, isothermal room temperature conditions is plotted in Fig. 10. We note that the
quasistatic drive conditions minimize eddy current losses.

The hysteretic and nonlinear relation between H and M is quantified by model (62) with
the kernel M specified by Eq. (27). The relationships between parameters in the model and
attributes of the data are analogous to the ferroelectric case for which details are provided
in Section 4.1. To construct the model, the measured coercive field value H, = 6158 A/m
and reciprocal slope dH/dM = 6.5 after saturation were used to obtain initial estimates
for H. and . The final parameter values My = 8.7 x 10* A/m, n=7, H. = 2000 A/m,
c=0.65A%/m?, b =5x 108 A*/m?, C =1.98 x 1073 were then obtained through a least
squares fit to the symmetric major loop data yielding the model fit illustrated in Fig. 10.

Wound Wire Solenoid Terfenol-D Rod

End Mass
7

B e g
Direction of
Rod Motion

Permanent Magnet

Fig. 9. Prototypical Terfenol-D transducer.
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Fig. 10. Terfenol-D data and model response provided by Eq. (62).

Biased, periodic fields were subsequently input to the model, using the same parameter
values, to obtain the minor loop predictions, also plotted in Fig. 10. We note that when
predicting the minor loop responses, the starting magnetization is determined from the
symmetric loop fit; hence the accuracy of the minor loops is highly dependent on the
accuracy of the symmetric major loop. Additional examples illustrating the attributes of
the hysteresis model for ferromagnetic materials can be found in Smith et al. (submitted,
2003a).

As noted in Section 4.2, use of the density choices (57) and (61) can yield reduced
accuracy for certain materials and operating regimes due to restrictions imposed by the a
priori functional forms. To achieve additional accuracy in such cases, one can identify
general density values using techniques analogous to those in Smith et al. (2005).

4.3. Characterization of magnetic after-effects

Formulation of the mesoscopic kernel relations P, M and % in terms of the kinetic
evolution equations (12) and (48) provides the framework with the capability for
quantifying a range of phenomena including thermal relaxation, creep, magnetic after-
effects, and rate-dependent effects. In this example, we illustrate the characterization of
magnetic after-effects in steel whereas certain rate-dependent capabilities of the framework
are illustrated in Section 4.4 in the context of NiTi. Fits and rate-dependent simulations for
single crystal BaTiOj3, using an extension of the polarization model which incorporates 90°
switching, can be found in Kim et al. (to appear).

The experimental device consisted of a transducer analogous to that depicted in Fig. 9
with a cylindrical steel rod having length 5.08 cm and diameter 0.635cm in lieu of the
Terfenol-D rod. The input field plotted in Fig. 11(a) was input to the device to generate the
magnetization plotted in Figs. 11(b) and (c). One manifestation of magnetic after-effects is
the change in magnetization that occurs after the field is held constant at 7= 40s, as
designated by the vertical lines in Figs. 11(b) and (c), which is commonly referred to as
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Fig. 11. (a) Input magnetic field, and (b) magnetization data and model fit provided by Eq. (62). The vertical line
at T = 40s delineates the time at which the field is held constant. (¢c) Magnified view of the creep component of the
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creep. Accurate characterization of this phenomenon is necessary for applications which
require that magnetic actuators achieve and hold constant magnetizations or strains for
time scales longer than the relaxation time.

To construct the magnetization model (62), the parameter values # = 1.1031 x 10> and
J = 0.0708 s were estimated through a least squares fit to the data. Rather than employing
the a priori density relations (53) and (55), general values for v; and v, at the quadrature
points used when approximating the integrals in Eq. (56) were estimated using the
techniques detailed in Smith et al. (2005). The resulting fits in Figs. 11(b) and (c) illustrate
that by employing the kinetic relations (12) when constructing M, the model can
accurately characterize both the periodic H-M behavior before 7'=40s and the creep
behavior in M between 40 and 50s. Additional examples illustrating the performance of
the model for characterizing the manifestation of magnetic after-effects on biased minor
loops can be found in Braun et al. (submitted).

4.4. Model fit for NiTi

The final example illustrates the characterization of major and biased minor loops at
three strain rates for an SMA wire in tensile experiments conducted at room temperature.

The wire is a typical NiTi compound (SE508) from nitinol devices and components
(NDC) having a diameter of d = 0.5mm and length of £ = 100 mm which underwent a
training procedure of 100 previous loading/unloading cycles. The mesoscopic model
parameters include the density p = 6400kg/m?, the two Young’s moduli Y5 = 32GPa
and Yy = 20 GPa, and the transformation strain ¢r = 0.038. The transformation stresses
were determined to be 6A(7T;) =430MPa at T, = 323K and oA(7Ty) = 660 MPa at
Ty = 353K. The width § of the hysteresis curve, specified by Eq. (42), was taken to be
0 = 100 MPa. Since convection mechanisms dominated conduction in the experiments, the
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heat transfer coefficient was taken to be 4. = 200 W/m?/K' and the thermal conductivity
was specified as 1 =0W/m?/K'. The specific heats for austenite and martensite were
taken to be equal and having the value of co = ¢y = 450] /kg1 /K!. The relaxation time
was chosen to be 7 = 10ms and the activation volume was specified to be 1 x 1072 m?.
Finally, the macroscopic homogenization was performed using the Laplace distributions
(64) and (66) with the parameters 64 = 273 MPa and b = ¢ = 30 MPa.

It is illustrated in Fig. 12 that the model accurately characterizes the approximately
linear elastic austenite behavior, the phase transition from austenite to martensite and back
again, and the behavior of the nested minor loops. The comparison between the
experimental data and model predictions in Fig. 13 demonstrates both the rate dependence
exhibited by the material and the capability of the model to quantify this behavior. In
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Fig. 12. Superelastic NiTi data (Seelecke and Bergman, Preprint) and model fit provided by Eq. (68) with &
specified by Eq. (50).
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concert, this illustrates utility of the framework for bulk material characterization,
transducer design and model-based control design.

5. Concluding remarks

The theory presented here provides a unified framework for modeling hysteresis and
constitutive nonlinearities inherent to a broad range of ferroelectric, ferromagnetic, and
ferroelastic compounds. At the microscopic scale, the sources of hysteresis vary quite
significantly and can roughly be attributed to dipole switching in ferroelectric materials,
moment rotation and domain wall losses in ferromagnetic materials, and transitions
between austenite and martensite phases in ferroelastic compounds. At the lattice level,
however, analogous Helmholtz and Gibbs energy relations can be formulated and
employed to construct unified mesoscopic models both in the presence and absence of
thermally activated relaxation mechanisms. For homogeneous, single crystal compounds,
the mesoscopic relations can be extrapolated to yield macroscopic hysteresis models. To
accommodate material nonhomogeneities, polycrystallinity and nonuniform effective
fields, stochastic homogenization techniques, based on the assumption that parameters
such as coercive, relative and interaction fields are manifestations of underlying
distributions, are employed to construct macroscopic models. These models provide
sufficient accuracy for material characterization but are sufficiently low order to permit
transducer design and model-based control development.

Whereas the framework has its genesis in the SMA models of Achenbach (1989),
Achenbach and Miiller (1985), it differs from that theory in several aspects. With regard to
the SMA model, the use of the Helmholtz energy as the relevant thermodynamic potential
in the statistical derivation of the transition probabilities eliminates limitations associated
with the temperature-independent potential energy employed in the original formulation.
Secondly, the statistical homogenization techniques used to incorporate material and field
nonhomogeneities provide the framework with significant flexibility with regard to
materials and operating regimes. Finally, the extension of the theory to ferroelectric and
ferromagnetic compounds provides a unified characterization framework for ferroic
compounds.

Given the general nature of the framework, it is not surprising that it bears certain
similarities with Preisach models and it is illustrated in Smith and Seelecke (2002) that it
actually provides an energy basis for certain extended Preisach models—with four
fundamental differences. (i) Due to its energy basis, a number of the parameters in the
present framework can be directly correlated with properties of the data whereas Preisach
parameters must typically be estimated solely through a least squares fit to data. While
least squares techniques are often used to fine tune parameters in the present models, the
physical correlation provides initial estimates and facilitates model updating to
accommodate changing environmental conditions. (ii) The relaxation mechanisms and
temperature dependence are incorporated in the kernels, or hysterons, P, M and g rather
than in the densities or parameters as is the case for Preisach models. This eliminates the
necessity of vector-valued parameters or lookup tables in subsequent control design. (iii)
The model guarantees biased minor loop closure in quasistatic operating regimes but does
not enforce congruency when Helmholtz relations of the form (4) and (22) are used
construct the Ising kernels (17) and (25). Hence it does not require modifications of the
type employed in moving Preisach models (Della Torre, 1999) to accommodate the
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noncongruency often encountered in measured data. (iv) The model automatically
incorporates reversibility through the energy construction of hysterons. This eliminates the
modifications required in Preisach models to achieve reversibility in certain drive regimes.

In order for any fixed-temperature, rate independent model to provide an energy basis
for classical Preisach representations, it must satisfy the congruency and deletion
properties established by Mayergoyz as necessary and sufficient conditions for classical
Preisach models (Mayergoyz, 1991). Because the energy-based models do not enforce
congruency, they are thus not mathematically equivalent to classical Preisach formula-
tions. However, in the absence of thermal activation, they do provide an energy basis for
the moving Preisach models described in Della Torre (1999). Moreover, use of kernels (14),
(32) or (50) that incorporate relaxation mechanisms through statistical mechanics
principles yields macroscopic models which are analogous to the statistically modified
Preisach models used to model aftereffects and accommodation in magnetic materials
Della Torre (1999). Analysis quantifying the relationship between this modeling
framework and various extended Preisach theories is under present investigation.

Whereas the present theory provides a comprehensive framework for characterizing
hysteresis and constitutive nonlinearities for a range of ferroic materials, a number of
issues are under present investigation or remain to be addressed. It is first noted that the
present formulation focuses on uniaxial input fields and order parameters whereas a
number of applications require 2-D or 3-D models. This is especially pertinent in
ferroelectric and ferromagnetic materials where 90° switching is inherently related to
applied or generated stresses. Initial investigations focusing on the extension of the energy
analysis and stochastic homogenization theory to the 2-D and 3-D energy landscapes
necessary to accommodate stress-induced switching and multivariate models can be found
in Ball et al. (submitted), Kim et al. (to appear), and this constitutes an active research
area. Similarly, crystalline anisotropies can significantly affect the behavior of various
ferroelectric and ferromagnetic compounds and these attributes are presented neglected in
the unified framework. The incorporation of appropriate anisotropy energy relations in the
framework is also under investigation.

From the perspective of model-based control design, this modeling approach is
advantageous due to both the accuracy and efficiency provided by the models and the fact
that it provides a unified framework for model-based control design. In the context of
nonlinear optimal control design, the models have recently been employed when
developing control algorithms for piezoceramic transducers (Zhong et al., 2003) and
SMA actuators (Heintze et al., 2003; Seclecke and Biiskens, 1997) including real-time
control implementation as reported in Seelecke et al. (2001). To permit linear control
design, one often employs inverse models as filters to compensate for hysteresis and
constitutive nonlinearities so that control inputs to the system are approximately those
specified by the control law. Whereas a number of control designs have been developed
within this context (e.g., see Cruz-Hernandez and Hayward, 1998; Grant and Hayward,
1997; Nealis and Smith, 2003; Smith, 2001; Tan et al., 2001; Tao and Kokotovic, 1996), all
are dependent on having accurate and efficient inverse models. For homogeneous, single
crystal transducer compounds, the kernels P, M or € can either be directly inverted, or
approximately inverted through the solution of complementary differential equations in a
manner similar to that detailed for related models in Smith (2001). For nonhomogeneous,
polycrystalline transducer compounds, approximate model inverses have been constructed
by employing the highly efficient macroscopic models in direct algorithms based on the
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monotonic relation between external fields and the resulting changes in P, M or e (Smith et
al., 2002). Robust control designs utilizing approximate inverses constructed in this
manner are illustrated for magnetostrictive transducers in Nealis and Smith (2003), and
analogous inverse-based control designs for PZT and SMA transducers, and the real-time
implementation of resulting control algorithms are under present investigation.
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