Review - Solutions of Ordinary Differential Equations

Author: John M. Cimbala, Penn State University Latest revision: 07 November 2016

Example : y = y(t)	$y\frac{dy}{dt} = C$	• Separate variables: $ydy = Cdt$ • Solve: $y^2/2 = Ct + C_1$
Example : y = y(t)	$ty\frac{dy}{dt} = C$	• Separate variables: $ydy = \frac{C}{t}dt$
		• Solve: $y^2/2 = C \ln(t) + C_1$

First-Order, Separable, Ordinary Differential Equations

First-Order, Linear, Non-Homogeneous, Ordinary Differential Equations

Example : y = y(x)	$\frac{dy}{dx} + P(x)y = Q(x)$	• Multiply each term by an <i>integrating factor</i> , $v = \exp(\int P dx)$
		• Solve: This leads to an exact differential on the LHS, which can be solved easily.

Higher-Order, Linear, Homogeneous, Ordinary Differential Equations with Constant Coefficients

Example : y = y(x)	$\frac{d^{3}y}{dx^{3}} - 4\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} + 6y = 0$	• Rewrite in terms of a <i>linear operator</i> , $D^n y = \frac{d^n y}{dx^n}$: Here, $(D^3 - 4D^2 + D + 6) y = 0$ • Factor the LHS: Here, $(D + 1) (D - 2) (D - 3) y = 0$ • Find the roots of the LHS: Here the roots are -1, 2, and 3 • Solve: $y = C_1 e^{-x} + C_2 e^{2x} + C_3 e^{3x}$
Example : y = y(x)	$\frac{d^2y}{dx^2} - a^2y = 0$	 Rewrite in terms of the linear operator: Here, (D² - a) y = 0 Factor the LHS: Here, (D - a) (D + a) y = 0 Find the roots of the LHS: Here the roots are a and -a Solve: y = C₁e^{ax} + C₂e^{-ax} or y = C₃ cosh(ax) + C₄ sinh(ax)
Example : y = y(x)	$\frac{d^2y}{dx^2} + a^2y = 0$	 Rewrite in terms of the linear operator: Here, (D² + a) y = 0 Factor the LHS: Here, (D - ia) (D + ia) y = 0 Find the roots of the LHS: Here the roots are ia and -ia Solve: y = C₁e^{iax} + C₂e^{-iax} or y = C₃ cos(ax) + C₄ sin(ax)

Higher-Order, Nonlinear, Non-Homogeneous, Ordinary Differential Equations

Example:	$d^3 y = d^2 y (dy)^2$	•	Define N unknowns, where N is the highest order derivative of the
y = y(x)	$\left \frac{u^{2}y}{t^{3}} + P(x)\frac{u^{2}y}{t^{2}} + \left \frac{u^{2}y}{t^{2}} \right = Q(x)$		original equation: Here, $N = 3$, and define
	$dx^3 \qquad dx^2 (dx)$		$F_1 \equiv \frac{d^2 y}{dx^2}$, $F_2 \equiv \frac{dy}{dx}$, $F_3 \equiv y$
		٠	Split equation into N first-order equations, one for each F:
			$\frac{dF_1}{dx} = \frac{d^3y}{dx^3} = Q(x) - P(x)\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2, \frac{dF_2}{dx} = \frac{d^2y}{dx^2}, \frac{dF_3}{dx} = \frac{dy}{dx}$
		•	Define derivative array in standard Runge-Kutta form, in terms of the
			N unknowns, F_1, F_2, \dots, F_N :
			$D_1 \equiv \frac{dF_1}{dx} = Q(x) - P(x)F_1 - F_2^2, D_2 \equiv \frac{dF_2}{dx} = F_1, D_3 \equiv \frac{dF_3}{dx} = F_2$
		•	Solve simultaneously for $F_1, F_2,, F_N$ using the Runge-Kutta (R-K)
			numerical technique and the boundary conditions. [See a separate on-
			line <u>learning module</u> from Professor Cimbala that explains the R-K
			technique.]