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First-Order, Separable, Ordinary Differential Equations 
Example: 
y = y(t) 

dyy C
dt

=  
• Separate variables: ydy = Cdt 
• Solve: 2
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First-Order, Linear, Non-Homogeneous, Ordinary Differential Equations 
Example: 
y = y(x) ( ) ( )dy P x y Q x

dx
+ =  • Multiply each term by an integrating factor, ( )expv Pdx= ∫  

• Solve: This leads to an exact differential on the LHS, which can be solved 
easily. 

 

Higher-Order, Linear, Homogeneous, Ordinary Differential Equations with Constant Coefficients 
Example: 
y = y(x) 

3 2

3 24 6 0d y d y dy y
dxdx dx

− + + =  • Rewrite in terms of a linear operator, 
n

n
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d yD y
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≡ : Here, 

(D3 - 4D2 + D + 6) y = 0 
• Factor the LHS: Here, (D + 1) (D - 2) (D - 3) y = 0 
• Find the roots of the LHS: Here the roots are -1, 2, and 3 
• Solve: 2 3
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Example: 
y = y(x) 
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• Rewrite in terms of the linear operator: Here, (D2 - a) y = 0 
• Factor the LHS: Here, (D - a) (D + a) y = 0 
• Find the roots of the LHS: Here the roots are a and -a 
• Solve: 1 2

ax axy C e C e−= +  or 3 4cosh( ) sinh( )y C ax C ax= +  
Example: 
y = y(x) 

2
2

2 0d y a y
dx

+ =  
• Rewrite in terms of the linear operator: Here, (D2 + a) y = 0 
• Factor the LHS: Here, (D - ia) (D + ia) y = 0 
• Find the roots of the LHS: Here the roots are ia and -ia 
• Solve: i i

1 2
ax axy C e C e−= +  or 3 4cos( ) sin( )y C ax C ax= +  

 

Higher-Order, Nonlinear, Non-Homogeneous, Ordinary Differential Equations 
Example: 
y = y(x) 
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• Define N unknowns, where N is the highest order derivative of the 

original equation: Here, N = 3, and define 
2
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• Split equation into N first-order equations, one for each F: 
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• Define derivative array in standard Runge-Kutta form, in terms of the 
N unknowns, F1, F2, ..., FN: 
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• Solve simultaneously for F1, F2, ..., FN using the Runge-Kutta (R-K) 
numerical technique and the boundary conditions. [See a separate on-
line learning module from Professor Cimbala that explains the R-K 
technique.] 

 

http://www.mne.psu.edu/cimbala/Learning/General/Runge_Kutta_Technique.pdf

