VAPOR PRESSURE AND VISCOSITY

In this lesson, we will:

. Define vapor pressure and its significance
. Discuss cavitation and its consequences, and do an example problem
. Define viscosity and do some example problems that involve viscous forces
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e The vapor pressure Py of a pure substance is

Water molecules—vapor phase

the pressure exerted by its vapor molecules *, B
when the system is in phase equilibrium with % d a &
its liquid molecules at a given temperature (as & P
illustrated in the figure for water). / /

* Vapor pressure (preferred in fluid mechanics) oo &%)g &gg%%g&ggg&ggg%%

is the same as saturation pressure Psat

(preferred in thermodynamics). Water molecules—Iliquid phase
e When the pressure in a liquid drops below the

vapor pressure, the liquid locally vaporizes or “boils” — a process called cavitation.
e Cavitation involves the formation of tiny bubbles called cavitation bubbles.

Example: Vapor Pressure and Cavitation
Given: Water at 20°C flows at high speed through the narrow gap in a valve. Some
calculations indicate that the lowest pressure in the flow is 3220 Pa.

To do: Determine if cavitation is likely to occur in this valve.
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See my short YouTube video called “Cool Consequences of Cavitation” for more about
cavitation and some of the interesting problems it causes. ‘
https://youtu.be/2itgHHCj0dc e v
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https://youtu.be/2itqHHCj0dc

ViSCOSit! Viscosity
e Viscosity u (some authors use # instead) is the fluid Y

property that represents internal resistance of a fluid W

to motion. Pove Ctn*-rovc

e Viscosity u is also called dynamic viscosity. / /
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e Kinematic viscosity vis viscosity divided by density,
since this combination of variables occurs frequently

in fluid mechanics, V=ﬁ. { s { [y] i ‘Xﬁ'
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e The viscosity of gases increases with temperature,
while the viscosity of liquids decreases with
temperature, as illustrated in the figure.
e For water, y and/or vcan be found in tables or online.
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e For air, # and/or vcan be found in tables or online. In addition, we use Sutherland’s Law
for calculation of the viscosity of air at a given temperature,
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To do: Calculate the dynamic viscosity and the kinematic viscosity of this air using
Sutherland’s Law and compare to the values listed in the Appendix at the given temperature.
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See my short YouTube video called “Block Sliding Down an Incline on an Oil Film” for

another example that applies viscosity. T v i e s v Sl W
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« The no-slip condition sets : Block Sliding Down an Incline
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e The velocity profile is linear,

o This is our final solution for block
u(y)= Ly L o
y I speed ¥ sliding down the incline

See my short YouTube video called “TMFM: Fluid Viscosity and Its Bearing on Journal

Bearings” for another example that applies viscosity.
https://youtu.be/tLvvY GKI2xk

Co-Rotating Cylinders and Viscosity

o Consider fluid in the ‘. Fluid
thin gap between an inner |
rotating cylinder and an
outer stationary cylinder

o If gap ( <<R, the velocity
profile is approximately linear

o By measuring torque T required
to turn the inner cylinder, we can solve
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TMFM: Fluid Viscosity and Its

for 4, T¢ Top view Bearing on Journal Bearings
= T Photos from Cengel and Cimbala, Fluid Mechanics:
4z R°nlL Fundamentals and Applications, ed. 4, McGraw-Hill, 2018.

Newtonian vs. Non-Newtonian Fluids
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