BUOYANCY AND STABILITY
In this lesson, we will:

- Define the buoyant force on a submerged body and how to calculate it
- Discuss Archimedes' Principle
- Discuss how to predict the stability of a boat or ship
- Do some example problems

Buoyancy and Archimedes' Principle
We are still discussing hydrostatics, so our workhorse equation is $P_{\text {below }}=P_{\text {above }}+\rho g|\Delta z|$.

$G=$ center of gravity (center of mass)
$C=$ centroid of the volume
$B=$ center of buoyancy

Archimedes' Principle: The buoyant force acting on a body immersed in a fluid is equal to the weight of the fluid displaced by the body, and it acts upward through the centroid of the displaced volume.

The pressure distribution is identical to that on the real body

$$
\begin{aligned}
& {\left[W=\rho_{f} g \forall_{\text {sub }}\right.} \\
& F_{B} \text { must }=W \text { here }
\end{aligned}
$$

Example: Buoyancy
Given: A sphere of diameter $D=0.0550 \mathrm{~m}$ and density $\rho_{\text {body }}=17 \underline{0} 0 \mathrm{~kg} / \mathrm{m}^{3}$ falls into a tank of water ($\rho_{f}=100 \underline{0} \mathrm{~kg} / \mathrm{m}^{3}$).
To do: Calculate the net downward body force on the sphere due to gravity in units of N .
Solution:

Net downward body fore $=F$

$$
\begin{gathered}
\left.F=(W)-F_{B}\right) \\
F=\left(\rho_{\text {poly }}-\rho_{f}\right) g \frac{\pi D^{3}}{6}
\end{gathered}
$$

\#S $F=(1700-1000) \frac{\mathrm{kg}}{\mathrm{m}^{3}}\left(9.807 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(\pi) \frac{(0.0550 \mathrm{~m})^{3}}{6}\left(\frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right)=0.598 \mathrm{~N}$
Floating (Partially Submerged) Bodies

Person floating in the dense salty water of the Dead Sea. Photo by the author's son, Andy Cimbala.

- Weight acts on the total volume
- Buoyancy action only on the submerged vol.

Bonce: $F_{B}=W$

$$
\rho_{\text {fluid } g \forall_{\text {submerge) }}}=\rho_{\text {body }} g \forall_{\text {toil }} \rightarrow \frac{\forall_{\text {surnegod }}}{\forall_{\text {total }}}=\frac{\rho_{\text {body }}}{\rho_{\text {find }}}
$$

Example: Partially Submerged Body
Given: An ice cube floats in a glass of cold water.
To do: Calculate the percentage of the ice cube volume that is above the water.
Solution:

$$
\begin{aligned}
& \rho_{\text {ike }} \approx 916 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=\rho_{b} \\
& \rho_{\text {cold water }} \approx 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=\rho_{f}
\end{aligned}
$$

$\frac{\forall_{\text {sub }}}{\forall_{\text {tonal }}}=\frac{\rho_{b}}{\rho_{f}}=\frac{916}{1000}=0.916$ or $\begin{gathered}91.6 \% \text { of the volume } \\ \text { is submerged }\end{gathered}$
$\therefore 8.4 \%$ of the wee cube 11 rove water
Hydrometer - A simple instrument to measure the S.G. of a liquid

Photo from https://study.com/

Photo from https://brewtogether.com/

Stability of Ships and Boats

Simple analogy - a "ball on the floor:"

(a) Stable

(b) Neutrally stable

(c) Unstable

From Çengel and Cimbala, Ed. 4.

Stability of Fully Submerged Bodies \begin{tabular}{|l|}

\hline | G is the center of gravity |
| :--- |
| (depends on how the |
| weight is distributed |
| inside the body) |

\hline
\end{tabular}

Bottom line: The body is unstable if center of buoyancy \boldsymbol{B} is below center of gravity \boldsymbol{G}.

Stability of Partially Submerged Bodies (Ships and Boats)

Note: As the boat tips ("lists") to one side, the submerged part of the hull is no longer symmetric, and it is difficult to calculate the new line of action of the hydrostatic pressure force. We thus do only a qualitative analysis here.

Define $M=$ the metacenter = the point where the line of action of the buoyancy force before rotation and the line of action of the buoyanceg force after rotation intersect.

Line of action of the buoyancy force before rotation

Line of action of the buoyancy force after rotation
(a) Stable

(c) Unstable

Point M is below point G

Bottom line: The boat is unstable if metacenter \boldsymbol{M} is below center of gravity \boldsymbol{G}.

