
REYNOLDS TRANSPORT THEOREM 
 

In this lesson, we will:  
 

• Show an analogy between the material derivative and the Reynolds Transport Theorem  
• Discuss the purpose and usefulness of the Reynolds Transport Theorem (RTT) 
• Show alternate forms of the RTT, including various simplifications  
• Do an example problem 
 
Introduction and Overview 
 

• A system [also called a closed system] is a quantity of matter of fixed identity. No mass 
can cross a system boundary. 

• A control volume [also called an open system] is a region in space chosen for study. 
Mass can cross a control surface (the surface of the control volume). 

• The fundamental conservation laws (conservation of mass, energy, etc.) apply directly 
to systems. 

• However, in most fluid mechanics problems, control volume analysis is preferred 
over system analysis (for the same reason that the Eulerian description is usually 
preferred over the Lagrangian description). 

• Therefore, we need to transform the conservation laws from a system to a control 
volume. This is accomplished with the Reynolds transport theorem (RTT). 

 
Analogy Between the Material Derivative and the RTT 
 

There is a direct analogy between the transformation from Lagrangian to Eulerian 
descriptions (for differential analysis using infinitesimally small fluid elements) and the 
transformation from systems to control volumes (for integral analysis using large, finite 
flow fields): 

 
In both cases, the fundamental laws of physics (conservation laws) are known and apply 
directly to the analysis on the left (Lagrangian or system). 
These laws of physics must be transformed so as to be useful in the analysis on the right 
(Eulerian or control volume).

Integral analysis 
 

Differential analysis 
 

The material derivative is used 
to transform from Lagrangian to 
Eulerian descriptions for 
differential analysis 
 

The Reynolds transport 
theorem is used to transform 
from system to control volume 
for integral analysis 



Another way to think about the RTT is that it is a link 
between the system approach and the control volume 
approach. 
 
See textbook for detailed derivation of the RTT. Here are 
some highlights: 

• Let B represent any extensive property (like mass, 
energy, or momentum). 

• Let b be the corresponding intensive property, i.e., 
b = B/m (property B per unit mass). 

• Our goal is to find a relationship between Bsys or 
bsys (property of the system, for which we know the 
conservation laws) and BCV or bCV (property of the control volume, which we prefer to 
use in our analysis). 

• The results are shown below in various forms: 
 

 
For fixed (non-moving and non-deforming) control volumes, 
 

 

 
 
 
 
 
 
 
 
For nonfixed (moving and/or deforming) control volumes, 

 
 
 
 
where rV



 is the relative velocity, i.e., the velocity of the fluid relative to the control surface 
(which may be moving or deforming), 

 

Since the control volume is fixed, the order of integration or differentiation does not 
matter, i.e., 
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∂
∂∫  . Thus, the two circled quantities above are 

equivalent for a fixed control volume. 
 

Note: The only difference in the equations is that we replace  V


 by rV


 in this 
version of the RTT for a moving and/or deforming control volume. 
 



We can also switch the order of the time derivative and the integral in the first term on the 
right, but only if we use the absolute (rather than the relative) velocity in the second term on 
the right, i.e., 

 
Comparing Eqs. 4-45 and 4-42, we see that they are identical. Thus, the most general form of 
the RTT that applies to both fixed and non-fixed control volumes is  

 
Even though this equation is most general, it is often easier in practice to use Eq. 4-44 for 
moving and/or deforming (non-fixed) control volumes because the algebra is easier. 
 
Simplifications: 

• For steady flow, the volume integral drops out. In terms of relative velocity, 

 
• For control volumes where there are well-defined inlets and outlets, the control 

surface integral can be simplified, avoiding cumbersome integrations, 

  
 
Note that the above equation is approximate, so it may not always be accurate; but it will be 
used almost exclusively in this course and is used generally in engineering analysis. 
 
  



Example: Reynolds Transport Theorem 
Given: There is a steady, two-dimensional flow 
of water (density = 1000 kg/m3) out of a large 
outlet as sketched (not to scale). 

• Location y1 = 1.00 m  
• Location y2 = 3.00 m  
• Property b in the RTT equation is 1 
• The width of the outlet (into the page in 

the sketch) is s = 10.0 m  
• The velocity components are u = 3.22 m/s 

(horizontal direction) and v = 1.50 m/s (vertical direction) 
• The velocity is constant across the entire outlet  

 

To do: Calculate the RTT surface integral ( )
outlet
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  across this outlet. 

 

Solution:  
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