REYNOLDS TRANSPORT THEOREM

In this lesson, we will:

. Show an analogy between the material derivative and the Reynolds Transport Theorem
. Discuss the purpose and usefulness of the Reynolds Transport Theorem (RTT)

. Show alternate forms of the RTT, including various simplifications

. Do an example problem T F
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o A system [also called a closed system] is a quantity of matter of fixed identity. No mass
can cross a system boundary.

e A control volume [also called an open system] is a region in space chosen for study.
Mass can cross a control surface (the surface of the control volume).

e The fundamental conservation laws (conservation of mass, energy, etc.) apply directly
to systems.

e However, in most fluid mechanics problems, control volume analysis is preferred
over system analysis (for the same reason that the Eulerian description is usually
preferred over the Lagrangian description).

e Therefore, we need to transform the conservation laws from a system to a control
volume. This is accomplished with the Reynolds transport theorem (RTT).

Analogy Between the Material Derivative and the RTT

There is a direct analogy between the transformation from Lagrangian to Eulerian
descriptions (for differential analysis using infinitesimally small fluid elements) and the
transformation from systems to control volumes (for integral analysis using large, finite
flow fields):
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In both cases, the fundamental laws of physics (conservation laws) are known and apply
directly to the analysis on the left (Lagrangian or system).

These laws of physics must be transformed so as to be useful in the analysis on the right
(Eulerian or control volume).




Another way to think about the RTT is that it is a link
between the system approach and the control volume
approach.

See textbook for detailed derivation of the RTT. Here are

some highlights: B can e 4 Suilar Or ¢ Veltor

e Let B represent any extensive property (like mass,
energy, or momentum).

e Let b be the corresponding intensive property, i.c.,
b = B/m (property B per unit mass).

e Our goal is to find a relationship between By or
bsys (property of the system, for which we know the
conservation laws) and Bcy or bey (property of the control volume, which we prefer to
use in our analysis).

e The results are shown below in various forms:
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RTT, fixed CV:

Alternate RTT, fixed CV: + [ pb?-ﬁ dA (4-42)
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Since the control volume is fixed, the order of integration or differentiation does not

matter, 1.¢., di J' ... 1s the same as I 82 . Thus, the two circled quantities above are
tCV CV t

equivalent for a fixed control volume. "
7.?\
For nonfixed (moving and/or deforming) control volumes, A" ?\\ =)
RTT, nonfixed CV: — = —J pb dV + J pbV.-11 dA S (4-44)
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Note: The only difference in the equations is that we replace 7 by I7r in this

version of the RTT for a moving and/or deforming control volume.

where I7r is the relative velocity, i.e., the velocity of the fluid relative to the control surface
-3
which may be moving or deforming), \
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Relative velocity: V.=V — Vg (4-43)
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We can also switch the order of the time derivative and the integral in the first term on the
right, but only if we use the absolute (rather than the relative) velocity in the second term on
the right, i.e.,
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Comparing Egs. 4-45 and 4-42, we see that they are identical. Thus, the most general form of

the RTT that applies to both fixed and non-fixed control volumes 1is
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Even though this equation is most general, it is often easier in practice to use Eq. 4-44 for
moving and/or deforming (non-fixed) control volumes because the algebra is easier.

Simplifications:
e For steady flow, the volume integral drops out. In terms of relative velocity,
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e For control volumes where there are well-defined inlets and outlets, the control
surface integral can be simplified, avoiding cumbersome integrations,
Approximate RIT for well-defined inlets and outlets:
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for each outlet for each inlet

Note that the above equation is approximate, so it may not always be accurate; but it will be
used almost exclusively in this course and is used generally in engineering analysis.
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Example: Reynolds Transport Theorem
Given: There is a steady, two-dimensional flow
of water (density = 1000 kg/m?) out of a large

outlet as sketched (not to scale). b=t 2 R=m
—_— 2
e Location y; =1.00 m (cons. of y /‘, 6 \V
e Location y, =3.00 m & T_> ' N
e Property b in the RTT equation is X dAN———p u
e The width of the outlet (into the page in : /
the sketch) is s = 10.0 m / e
e The velocity components are u = 3.22 m/s n= (U 0, O)
(horizontal direction) and v = 1.50 m/s (vertical direction) o
e The velocity is constant across the entire outlet /= (U‘,VJ ")

To do: Calculate the RTT surface integral j pb(f : ﬁ) dA across this outlet.

outlet y_‘
Solution: > 5 _
N-n= (u v, o) ‘ (\, 0,05

g \D A\ a.y \D AR
}0 @ = u s Q\
ou Tk ]a . J

A

g ?oL@-'*'\)JA-: (\mo %(\)@316) (\0,0/4><3_00 _ W)y(

oudlX v
= | €4 Hod -S-’-




