THE CONTINUITY EQUATION

In this lesson, we will:

Derive the Continuity Equation (the Differential Equation for Conservation of Mass)
Discuss some Simplifications of this equation
Do some example problems in both Cartesian and cylindrical coordinates

Derivation of the Continuity Equation

The derivation involves examination of the flow into and out of a tiny control volume that
shrinks to zero volume in the limit. We utilize Taylor Series Expansions.
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Consider a tiny differential control volume. First, we approximate the mass flow rate into or
out of each of the six surfaces of the control volume, using Taylor series expansions around
the center point, where the velocity components and density are u, v, w, and p. For example,
at the right face,
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The mass flow rate through each face is equal to p times the normal component of velocity
through the face times the area of the face. We show the mass flow rate through all six faces
in the diagram below (Figure 9-5 in the text):
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All copied figures and equations from Cengel and Cimbala, Ed. 4.

Next, we add up all the mass flow rates through all six faces of the control volume in order to
generate the general (unsteady, incompressible) continuity equation:




Net mass flow rate into CV: all the positive mass flow rates (into CV)
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We plug these into the integral conservation of mass equation for our control volume:
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This term 1s approximated at the center of the tiny control volume, i.e.,
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The conservation of mass equation (Eq. 9-2) thus becomes
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Dividing through by the volume of the control volume, dxdydz, yields

Continuity equation in Cartesian coordinates:
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Finally, we apply the definition of the divergence of a vector, i.e.,
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Letting G= p17 in the above equation, where V= (u,v, w) , Eq. 9-8 is re-written as
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Simplifications

The above continuity equation is general — steady or unsteady, compressible or
incompressible, valid for any coordinate system. Now let’s consider some simplifications.
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Example Problems

Example: Continuity equation
Given: A velocity field is given by

u=3x+4y v="by+2x° w=0
To do: Calculate b such that this a valid steady, incompressible velocity field.

Solution:

To be a valid steady, incompressible velocity field, it must satisfy continuity!
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Example: Continuity equation
Given: A velocity field is given by
u=ax+b v = unknown w=0
To do: Derive an expression for v so that this a valid steady, incompressible velocity field.

Solution:

To be a valid steady, incompressible velocity field, it must satisfy continuity!
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Example: Continuity equation
Given: A flow field is 2-D in the -8 plane, and its velocity field is given by
u, = unknown u, =co u =0
To do: Derive an expression for u, so that this a valid steady, incompressible velocity field.

Solution:

To be a valid steady, incompressible velocity field, it must satisfy continuity!
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Example: Continuity equation

Given: A flow field is 2-D in the r-@plane, and its velocity field is given by
ur:—§+2 u, =2r+ab u =0

To do: Calculate a such that tl’;is a valid steady, incompressible velocity field.
Solution:

To be a valid steady, incompressible velocity field, it must satisfy continuity!
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