AERODYNAMIC DRAG ON VARIOUS OBJECTS

In this lesson, we will:

- Look at tables of drag coefficient for various objects (geometric shapes, parachutes, trees, people, buildings, etc.)
- Do a "student-friendly" example problem drag on a bicycle

Drag Coefficients on Objects of Various Shapes

See tables in the textbook, copied here. Table 11-1: 2-D bodies; Table 11-2: 3-D bodies.

TABLE 11-2 3-0 BODVES

Representative drag coefficients C_D for various three-dimensional bodies based on the frontal area for Re > 10 ⁴ unless stated otherwise (for use in the drag force relation $F_D = C_D A \rho V^2/2$ where V is the upstream velocity)		
Cube, $A = D^2$	Thin circular disk, $A = \pi D^2/4$ $V \longrightarrow D \int D \qquad C_D = 1.1$	Cone (for $\theta = 30^{\circ}$), $A = \pi D^2/4$ $V \longrightarrow D$ $C_D = 0.5$
Sphere, $A = \pi D^2/4$	Ellipsoid, $A = \pi D^2/4$	C
V V C D C C D C D C C D C C D C D C C D C C D C C D C C D C C D C C C D C C C C C D C C C C C C C C C C C C C		$\begin{tabular}{ c c c c c } L dminar & Turbulent \\ $Re \leq 2 \times 10^5$ & $Re \geq 2 \times 10^6$ \\ \hline 0.75 & 0.5 & 0.2 \\ 1 & 0.5 & 0.2 \\ 2 & 0.3 & 0.1 \\ 4 & 0.3 & 0.1 \\ 8 & 0.2 & 0.1 \\ \hline 8 & 0.2 & 0.1 \\ \hline \end{tabular}$
Hemisphere, $A = \pi D^2/4$	Finite cylinder, vertical, $A = LD$	Finite cylinder, horizontal, $A = \pi D^2/4$
$V \qquad \qquad$	$V = \begin{bmatrix} D & UD & C_D \\ 1 & 0.6 \\ 2 & 0.7 \\ L & 5 & 0.8 \\ 10 & 0.9 \\ 40 & 1.0 \\ \infty & 1.2 \end{bmatrix}$ Values are for laminar flow (Re $\leq 2 \times 10^5$)	$\begin{array}{c c} V \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Streamlined body, $A = \pi D^2/4$ V C _D = 0.04 Rectangular plate, $A = LD$ V C _D = 1.10 + 0.02 (L/D + D/L) for 1/30 < (L/D) < 30	Parachute, $A = \pi D^2/4$	Tree, $A = \text{frontal area}$ A = frontal area V V , m/s C_D 10 0.4-1.2 20 0.3-1.0 30 0.2-0.7

Example – Drag on a Bicycle Rolling Down a Hill

Given: A person coasts a bicycle down a long hill with a slope of 5° in order to measure the drag area of the bike and rider. The mass of the bike is 7.0 kg, the mass of the rider is 70.0 kg, and the rolling resistance of the bike is measured separately – it is 19.0 N. When the rider coasts down the hill (no pedaling), the terminal speed is 10.1 m/s.

(a) To do: Calculate the drag area C_DA of the rider/bicycle combination in m².

Solution: First draw a free-body diagram of the bicycle and rider, showing all forces acting.

$$\begin{split} \mathcal{E}F_{x} &= o \qquad i \qquad \mathcal{E}F_{y} = o \\ mgsing &= F_{0} \text{ olling } -F_{0} \text{ acco } = 0 \\ mgsing &= F_{0} \text{ rolling } + \frac{1}{2} \rho \sqrt{C_{0}A} \qquad to \quad calculate \\ \hline \\ C_{0}A &= D_{12} \text{ area } = \frac{mgsing -F_{0}, \text{ rolling }}{\frac{1}{2} \rho \sqrt{2}} \quad \forall \quad answer \text{ in } \sqrt{wridde from} \\ \hline \\ Phug \text{ in the valueg:} \\ C_{0}A &= (70 + 7)kg \left(9.807 \frac{m}{5^{2}}\right) \left(\frac{N \cdot s^{2}}{k_{y} \cdot m}\right) \sin s^{0} - 19.0 \text{ N} \\ \frac{1}{2} \left(1.204 \frac{k_{y}}{m^{3}}\right) \left(10.1 \frac{m}{5}\right)^{2} \left(\frac{N \cdot s^{2}}{k_{y} \cdot m}\right) = 0.762 \text{ m}^{2} \end{split}$$

(**b**) **To do**: Calculate how much power in Watts (to the wheel) it would take for the person to ride this bike on a level road at the same speed (10.1 m/s).

Solution: Use the same equation we had in a previous lesson for automobiles:

$$\begin{split} \vec{W} &= \underbrace{\mu_{\text{rolling}}WV + \frac{1}{2}\rho V^{3}C_{D}A}_{\text{W},\text{W},\text{Speed}} \\ \text{We have speed} \\ \vec{W} &= \underbrace{\left(19.0 \text{ N}\right)\left(10.1 \frac{m}{7}\right) + \frac{1}{2}\left(1.204 \frac{\text{kg}}{\text{m}^{3}}\right)\left(10.1 \frac{m}{7}\right)^{3}\left(0.76233 \text{ m}^{2}\right)\left(\frac{\text{N} \cdot \text{S}^{2}}{\text{kg} \cdot \text{m}}\right)\left(\frac{\text{N} \cdot \text{S}}{\text{N} \cdot \text{m}}\right) \\ \vec{W} &= 665. \text{ W} \\ &\approx 0.89 \text{ hp} ! \end{split}$$