OBLIQUE SHOCKS

In this lesson, we will:

- Define **Oblique Shocks** and compare to normal shocks
- Discuss The θ - β -Ma Relationship and provide some qualitative comments about it
- Do two example problems

Definition and Geometry of an Oblique Shock

An oblique shock is a shock aligned at some angle other than 90° to the direction of flow.

e OBLIQUE MOCK e M_{a} , Z_{0} , M_{a} M_{a} , Z_{0} , M_{a} M_{a} , Z_{0} , M_{a} M_{a} , M_{a}

Below are some color schlieren images of oblique shocks.

Figures from Çengel and Cimbala, Ed. 4. Cone (axy motio)

The Theta-Beta-Mach Number Equation and Plot

• Do Some algebra i Hig

$$V_{1,b} = \frac{V_{1,m}}{\tan \beta}$$
 i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
i $V_{1,b} = \frac{V_{1,m}}{\tan \beta}$ i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
i $V_{2,b} = \frac{V_{2,m}}{\tan (\beta - \beta)}$ but $V_{1,b} = V_{2,b}$!!
The $\partial -\beta$ -Ma equation for oblique shocks:
 $Max = \frac{2\cot \beta(Ma_1^2 \sin^2 \beta - 1)}{Ma_1^2 [k + \cos(2\beta)] + 2}$ over $V_{2,b} = V_{2,b}$ if
 $V_{2,b} = \frac{Cot \beta(Ma_1^2 \sin^2 \beta - 1)}{Ma_1^2 [k + \cos(2\beta)] + 2}$ over $V_{2,b} = V_{2,b}$ is $V_{2,b} = \frac{V_{2,b}}{V_{2,b}}$
Note: It is Explicit if CALWLATING β for KNOWN $k \ge Ma_1$, $\xi = \beta$
 $V_{2,b} = \frac{V_{2,b}}{V_{2,b}} = \frac{V_{2,b}}{V_{2,b}} = \frac{V_{2,b}}{V_{2,b}}$ is $Ma_1 \ge \infty$
 $V_{2,b} = \frac{V_{2,b}}{V_{2,b}} = \frac{V_{2,b}$

COMMENTS : · Curves grow in Width i height as Ma T · For each Ma there is a maximum value of Q (Ont as Math × Maz Ma, · Each Mach * curve has a maximum & of 90 A NORMAL SHOCK IS THE STRUNGERT POLIBLE OBLIQUE SHOCK · Each Mach # curve also has a minimum B AT B= BMin THU IS THE WEAKEST POSSIBLE SHOLK Bmin = M = Mach angle = angle of a Mach wave = weakert Possible shock (nearly isentropic) An oblique shock with B<M cannot exist = SONIC LINE IF TRY TO FORCE 0 > OMAX. SHOLK JUMPI FORWARD & = MAX & LINE BECOMES A BOW SHOCK

CFD Example – 2-D wedge of various half angles (CFD by J. M. Cimbala):

Figure from Çengel and Cimbala, Ed. 4.

Oblique shock formed by supersonic flow impinging on three two-dimensional wedges with different wedge angles: $\theta = (a) 10^{\circ}$, $(b) 20^{\circ}$, and $(c) 30^{\circ}$. Upstream Mach number = 2.00. Contours of Mach number are shown, ranging from 0.2 (dark blue) to 2.0 (dark red).

Example: Steady 2-D Oblique Shock

<u>**Given</u>**: Air flowing at supersonic speed encounters an oblique shock. Here are some values:</u>

- Upstream: $P_1 = 101.325$ kPa, $T_1 = 288.0$ K, $Ma_1 = 3.00$
- $\beta = 50^{\circ}$ (oblique shock angle)

<u>To do</u>: Calculate turning angle θ , Ma_{1,n}, air properties P_2 and T_2 , and Mach number Ma₂.

Assumptions and Approximations: Steady, ideal gas.

Solution:

We apply the θ - β -Ma equation for oblique shocks, where we have solved for θ :

$$\theta = \arctan \left[\frac{2 \cot \beta (Ma_{1}^{2} \sin^{2} \beta - 1)}{Ma_{1}^{2} [k + \cos(2\beta)] + 2} \right] = 4\alpha \tan \left[\frac{2 \cot (M^{3}) (3.00^{2} \sin^{2} (50^{3}) - 1)}{3.00^{2} (1.40 + 4\alpha r (2 \times 50^{3})] + 2} \right]$$

$$\theta = 28.860^{\circ} \qquad \theta = 28.9^{\circ} \qquad (1.40 + 4\alpha r (2 \times 50^{3})] + 2 \qquad (2.50^{3}) = 2.29813 \qquad (2.50^{$$

