FANNO FLOW — COMPRESSIBLE DUCT FLOW WITH FRICTION

In this lesson, we will:

e Introduce Fanno flow: flow in a duct with friction but no heat transfer
e Discuss Fanno flow qualitatively and quantitatively
e Do an example problem

Disclaimer: This is an abbreviated summary of Fanno flow; a more rigorous analysis is
presented in my compressible flow course (ME 420 at Penn State University)

Fanno Flow Introduction, Approximations, and Assumptions
e Steady flow in a pipe or duct
e One-D flow (V approximately constant at any cross-section of the duct, i.e., at any x

location; so, V= V(x) onl -
o Ideal gas en) AL =y —x
e Constant gas properties (k, cp, R, etc.) —~ \——*
e Constant area (long, straight section of pipe or duct)
e Fully developed (ignore entrance effects) <
e Negligible heat transfer to or from the gas
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Linear momentum equation in x-direction: ,B ﬂ 2\
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Summary of Equations for Fanno Flow for an Ideal Gas

Conservation laws of mass, energy, and momentum (from above notes):

" an t{):
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prl = szz or ,OV = constant (1) ];)1 = Toz or CPT1 + ?1 = CPTZ ? (2)
Foo
B+l = B+ pt +-Lin) 3) vt
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How to calculate the friction force: ( o) d
hiop  Derimeter
e Integrate shear stress along the wall, y = y j T, dx
e Apply the Darcy friction factor, | f = 8;”2 , and assume f is constant between x; and x»
Yo,

Use the Churchill equation for f,

f= 8[(%)12 +(A+ B)”:l112

<
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VD, VD *? 37530
where Re:p h— k11 4=2-2.457-1n (lj +0.27£ l , B:( )

y7i v Re D Re
and hydraulic diameter |D, = L

perimeter
F~ . 1 X2
® Thus’ friction __ V2 dx
A 2D, J, 1°

Plug the above equation into our momentum equation (3) and do a /ot of algebra,
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Finally, consider the choked case, where Ma; = 1 and set x2 — x; = L"; since the flow is
choked at the exit. After some more algebra, the above equation becomes
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Application of Equation (4) to Fanno Flow Problems
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Final “workhorse” Fanno flow equations (for any Mach number):

L L, S, 7L 1—Ma2+k+1h{ (k+1)Ma® J
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Step-by-Step Procedure to Solve Fanno Flow Problems

1. For known conditions at 1, duct roughness ¢, hydraulic diameter D;, and pipe length L,
calculate friction factor f from the Churchill equation

i  1-Ma? k+1 k+1)Ma >
2. Calculate Ly from workhorse equation Ly azl + In (e, -

) D, kMa, 2k 2+(k—-1)Ma,
3. Calculate & from workhorse equation ﬁ = —fL‘ —fL 2 Jo\ve,

h D, D, \D,

« & bl 5
1-M k+1 k+1)Ma
4. Calculate Ma, from workhorse equation /L, = a22 ln( ( ) 2 Zj
WMLy W D, kMaz 2k 2+ (k - 1)M32

5. Calculate 7; from clever use of ratios, knowing that 7} is constant, and applying our
T, T, k-1 (k-1
state equation for 5, T,=—2-UF (1 + —Mazzj (1 + —Mafj]}
T o I 2 2

Knowing T, and Ma,, calculate any other desired properties at location 2

Example: Fanno flow
Given: /=9, -
Air enters a 5.00-cm diameter, 27.0-m long tube at
450 K, 220 kPa, and 85.0 m/s.
T e\ V,
The average roughness height of the inside wall of
the pipe is 0.08 mm. = ¢
The pipe is well-insulated, but we need to be concerned about friction in the pipe since it

Friction

is so long. ™S bbb —
¢ © ONFan Fow
To do:  Estimate the temperature, pressure, Velocggy, and Mach number at location 2.
(Stee
Solution: L

Assumptions and Approximations (consistent with our simplified Fanno flow analysis):

1. The air is an ideal gas, and the properties do not change with temperature or pressure.
The flow is steady and one-D.
The flow is adiabatic but friction along the tube walls is not negligible.
The Darcy friction factor fis approximated as constant based on conditions at the inlet,
and the Churchill equation is used to calculate f.

2.
3.
4.

Summary of inlet conditions
Known values: V; = 85.0 m/s, 71 =450 K, P, =220 kPa,
Dy, =D=0.0500m, ¢ =8.00x10°m, and L =27.0 m
Calculated: Ma; = 0.200, u; = 2.499x107° kg/(m s) from Sutherland equation,
p1=1.7035 kg/m> from ideal gas law




Step 1: Calculate Re and f from Churchill equation — Re = 289,660 an{ f = 0.02296

’ ’ ] k+1)Ma,’
Step 2: Calculate JL, from L. Mazl + k i (k+1)Ma, -
D, D, kMa?| 2k |2+(k-1)Ma,
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—Ma,’ k+1)Ma,’

Step 4: Calculate Ma, from ! Ma22 + k+1 In (k+1)Ma, :
kMa, 2k 2+(k—1)Ma,
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Step 5: Calculate 75 from 7, = (1+—M ) (1+—Ma1 )
/ Y450 K

Tz W3ty K
Step 6: Calculate other properties at location 2
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Additional verification of our assumptions

Let’s see if Darcy friction factor remains nearly constant by looking at the Moody chart:

Moody Chart: [Figure from Cengel and Cimbala, Fluid Mechanics: Fundamentals and
Applications, Ed. 4.]
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