Angular Momentum Control Volume Analysis
(Section 6-6, Cengel and Cimbala)

1. Equations and definitions

See the derivation in the book, using the Reynolds transport theorem. The result is:
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which can be/stated as
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We simplify the control surface integral for cases in which there are well-defined inlets
and outlets, just as we did previously for mass, energy, and momentum. The result is:
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Note that we cannot define an “angular momentum flux correction factor” like we did
previously for the kinetic energy and momentum flux terms. Furthermore, many
problems we consider in this course are steady. For steady flow, Eq. 6-50 reduces to:

Steady flow
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Finally, in many cases, we are concerned about only one axis of rotation, and we
simplify Eq. 6-51 to a scalar equation,
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Equation 6-52 is the form of the angular momentum control volume equation that we
will most often use, noting that 7 is the shortest distance (i.e. the normal distance)
between the point about which moments are taken and the /ine of action of the force or
velocity being considered. By convention, counterclockwise moments are positive.



2. Examples
See Examples 6-8 and 6-9 in the book. Example 6-9 is discussed in more detail here.

: EXAMPLE 6-9 Power Generation from a Sprinkler System

= A large lawn sprinkler with four identical arms is to be converted into a tur-
m . . ) :
i bine to generate electric power by attaching a generator to its rotating head,
m as shown In Fig. 6-38. Water enters the sprinkler from the base along the
m axis of rotation at a rate of 20 L/s and leaves the nozzles in the tangential
B direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane.
® The diameter of each jet is 1 cm, and the normal distance between the axis
:Df rotation and the center of each nozzle is 0.6 m. Estimate the electric
. Power produced.
|
! Electric _ .
generator R T
"".'Ilum;{;ﬁlull':-,""ff
% sy We choose the
/I\/ T gt \i/ stationary

Ve [ --....T A — {'_ "}_____ g (S:}(:;lg?ll volume
e S il = 0.6 mf-

.

N e P =P, at the

D Mol | og7le exits
. ; -
ot i FIGURE 6-38

Assumptions 1 The flow is cyclically steady (i.e., steady from a frame of ref-
erence rotating with the sprinkler head). 2 The water Is discharged to the
atmosphere, and thus the gage pressure at the nozzle exit is zero. 3 Genera-
tor losses and air drag of rotating components are neglected. 4 The nozzle
diameter is small compared to the moment arm, and thus we use average
values of radius and velocity at the outlet.
Properties We take the density of water to be 1000 kg/m?® = 1 kg/L.
Analysis We take the disk that encloses the sprinkler arms as the control
volume, which is a stationary control volume.

Conservation of mass:

The conservation of mass equation for this steady-flow system is m, = b
= Mg NOting that the four nozzles are identical, we have M ;e = Migal4
OF Vgt = Vigaf4 Since the density of water is constant. The average jet
exit velocity relative to the nozzle Iis

l".’lllnn;:;r.;r.ll.: . S L/s ( | ['[13
1000 L

V.. = = 63.60 m/s
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The angular and tangential velocities of the nozzles are

I min

w = 2 = 27300 rev/min) ( ) = 31.42 rad/s

60 s
Viezzte = reo = (0.6 m)(31.42 rad/s) = 15.85 m/s

That is, the water in the nozzle is also moving at a velocity of 18.85 m/s in
the opposite direction when it is discharged. Then the average velocity of the
water jet relative to the control volume (or relative to a fixed location on
earth) becomes

/'

Note: We must use the velocity relative to the control volume, which in this
case is the absolute velocity, since our control volume is fixed (not moving).

Vi = Vit = Vipzte = 63.66 — 18.85 = 44.81 m/s

Conservation of angular momentum:

Moting that this is a cyclically steady-flow problem, and all forces and
momentum flows are in the same plane, the angular momentum equation

can be approximated as > M= > rmv — > rmV, where r is the moment

out in

arm, all moments in the counterclockwise direction are positive, and all
moments in the clockwise direction are negative.

The free-body diagram of the disk that contains the sprinkler arms is given
in Fig. 6-38. Note that the moments of all forces and momentum flows
passing through the axis of rotation are zero. The momentum flows via the
water jets leaving the nozzles yield a moment in the
the effect of the generator on the control volume I1s a moment/also in the

directian (thus both are negative). Then the angular/ momentum

equation about the axis of rotation becomes -
Be careful with
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Substituting, the torgue transmitted through the shaft is determined to be
I N
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Ty = Tl Ve = (0.6 m)(20 kg/s)(44.51 mf“ba}(

since My, = pVy = (1 kg/L)(20 Lis) = 20 kg/s.

total



Calculation of the shaft power:
Then the power-generated becomes
Shaft power

W = 27Ty = @Tgpn = (31.42 rad/s)(537.7 N - m)

| kKW _
= 16.9 kW
(1(}[}(} N - mfs)

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW

of power.

The actual power generated will be less than this because of generator inefficiencies.

We can calculate the generated power as

electric 77 generatorVVshaft

Discussion To put the result obtained in perspective, we consider two limit-
Ing cases. In the first limiting case, the sprinkler is stuck and thus the angu-
lar velocity Is zero. The torque developed will be maximum in this case since
Viezzle = 0 @nd thus vV, = Vi = 63.66 m/s, giving Tgpapt max = 764 N - m. But
the power generated will be zero since the shaft does not rotate.

In the second limiting case, the shaft is disconnected from the generator
(and thus both the torque and power generation are zero) and the shaft accel-
erates until it reaches an equilibrium velocity. Setting T,z = O In the angu-

lar momentum equation gives V, = 0 and thus V

jet = anzﬂe = 6356 rT'IfE

The corresponding angular speed of the sprinkler is
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The variation of power produced with
angular speed.




