
Example Problem - Diffuser

Given: Water ($\rho = 1000 \text{ kg/m}^3$, $\mu = 1.00 \times 10^{-3} \text{ kg/m·s}$) flows through a horizontal diffuser, as sketched. The flow is fully developed at both locations 1 and 2. The inner diameter changes from d to D through the diffuser. The outlet of the diffuser is open to atmospheric pressure.

Given information:

- d = 1.2 cm
- D = 2.0 cm
- $\theta = 2 \times 10^{\circ} = 20^{\circ}$ (θ is the total included angle)
- $V_1 = 6.0 \text{ m/s}$
- $P_2 = P_{\text{atm}}$
- $\alpha_1 = 1.06$ and $\alpha_2 = 1.06$ (fully developed turbulent pipe flow)

To do: Calculate the gage pressure at location 1 and discuss.

Solution: To be done in class.