EES Solution for Example Problem – Matching a Pump to a Piping System

Here is exactly what I typed into the main "Equations Window" of EES:

```
Equations Window
                                                                 œ
                                                                       "EES Solution for the class example problem - matching a pump to a piping system
J. M. Cimbala"
"Constants:"
Deltaz = 8.0 [m]
rho = 1000 [kg/m^3]
mu = 1.00e-3 [kg/(m*s)]
D = 0.022 [m]
L = 150 [m]
SigmaK_L = 0.5 + 10 + 3*0.9 + 1.05
epsilon = 0.00026 [m]
g = g# "(gravitational constant, predifined by EES)"
"Pump performance curve:"
H_0 = 20.0 [m]
a_pump = 2.592e8 [s^2/m^5]
"Equations:"
Re = (rho*D*V)/mu
\vee dot = \vee^* PI^*(D^2)/4
h_pump_u_supply = H_0 - a_pump*V_dot^2
h_pump_u_system = 8*V_dot^2/(PI^2*g*D^4)*(f*L/D + SigmaK_L) + Deltaz
h_pump_u_supply = h_pump_u_system
\lor dot LPM = \lor dot*Convert(m^3/s,L/min)
"Colebrook equation:" 1/sqrt(f) = -2.0*log10((epsilon/D)/3.7 + 2.51/(Re*sqrt(f)))
"To solve, click on Calculate and then Solve. Note that it does not converge unless you
change the limits and guesses in Options-Variable Info"
```

Here is what the Formatted Equations window looks like (much "cleaner" looking equations – and easier to spot typo errors):

 $\delta Z = 8 [m]$ $\rho = 1000 \, [kg/m^3]$ $\mu = 0.001 [kg/(m*s)]$ D = 0.022 [m] L = 150 [m] SigmaK_L = $0.5 + 10 + 3 \cdot 0.9 + 1.05$ $\epsilon = 0.00026$ [m] $g = 9.807 [m/s^2]$ (gravitational constant, predifined by EES) Pump performance curve: $H_0 = 20$ [m] $a_{pump} = 2.592 \times 10^8 [s^2/m^5]$ Equations: $Re = \frac{\rho \cdot D \cdot V}{u}$ $\dot{\mathbf{V}} = \mathbf{V} \cdot \pi \cdot \frac{\mathbf{D}^2}{4}$ $h_{pump,u,supply} = H_0 - a_{pump} \cdot \dot{V}^2$ $h_{pump,u,system} = 8 \cdot \frac{\dot{V}^2}{\pi^2 \cdot q \cdot D^4} \cdot \left[f \cdot \frac{L}{D} + SigmaK_L \right] + \delta z$ $h_{pump,u,supply} = h_{pump,u,system}$ $\dot{\mathbf{V}}_{\text{LPM}} = \dot{\mathbf{V}} \cdot \left[60000 \cdot \frac{\text{L/min}}{\text{m}^{3}/\text{s}} \right]$ Colebrook equation:

$$\frac{1}{\sqrt{f}} = -2 \cdot \log \left[\frac{\epsilon}{D \cdot 3.7} + \frac{2.51}{\text{Re} \cdot \sqrt{f}} \right]$$

Here is what the "Options-Variable Info" chart looks like:

s Variable Information						?
Show array variables					d	
Variable	Guess 🔻	Lower	Upper	Display	Units	
a pump	1	-infinity	infinity	A 3 N	s^2/m^5	
D	1	-infinity	infinity	A 3 N	m	
Deltaz	1	-infinity	infinity	A 3 N	m	
epsilon	1	-infinity	infinity	A 3 N	m	
f	0.02	1.0000E-03	1.0000E-01	A 3 N		
g	1	-infinity	infinity	A 3 N	m/s^2	
H_0	1	-infinity	infinity	A 3 N	m	
h_pump_u_supply	1	-infinity	infinity	A 3 N	m	
h_pump_u_system	1	-infinity	infinity	A 3 N	m	
L	1	-infinity	infinity	A 3 N	m	
mu	1	-infinity	infinity	A 3 N	kg/(m*s)	
Re	10000	4.0000E+03	infinity	A 3 N		
rho	1	0.0000E+00	infinity	A 3 N	kg/m^3	
SigmaK_L	1	-infinity	infinity	A 3 N	-	
V –	1	0.0000E+00	infinity	A 3 N	m/s	
V dot	1	0.0000E+00	infinity	A 3 N	m^3/s	
V_dot_LPM	1	-infinity	infinity	A 3 N	L/min	
🗸 ОК	Apply	Print		Update	🗶 Car	ncel
Note: I had to change some of the initial guesses and some of the lower and upper limits in order for EES to converge on a solution. This takes some trial and error.						
I al EE	so had to manu S is not smart e	ally insert some nough to calcula	of the units. ate the units of	It seems on its ow	that n.	7

Finally, <u>Calculate</u> and <u>Solve</u> yields the solution, as shown in the Solution window:

Note: It is also possible to plot with EES. Here is a plot of supply head and system head as functions of volume flow rate. As you can see, they intersect at the operating point, which is around 10.8 Lpm.

