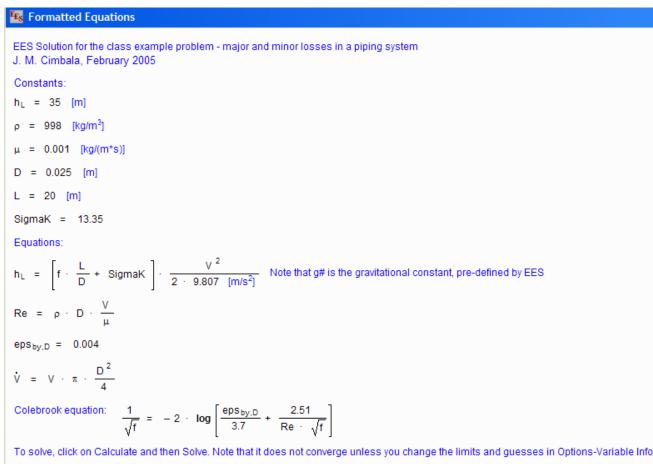

EES Solution for Example Problem – Major and Minor Losses in a Piping System


Here is exactly what I typed into the main "Equations Window" of EES:

Here is what the "Options-Variable Info" chart looks like:

how string variables Variable	Guess 👻	Lower	Upper	Dis	play	units	Key	Comment
D	1	-infinity	infinity	Α	3 1	N m		
eps_by_D	1	-infinity	infinity	Α	3	V		
f	0.02	1.0000E-03	1.0000E-01	А	3	V		
h_L	1	-infinity	infinity	Α	3	N m		
L	1	-infinity	infinity	Α	3	N m		
mu	1	-infinity	infinity	Α	3	V kg/(m*s)		
Re	10000	4.0000E+03	infinity	Α	3	N		
rho	1	0.0000E+00	infinity	Α	3	N kg/m^3		
SigmaK	1	0.0000E+00	infinity	Α	3	N _		
V	1	0.0000E+00	infinity	Α	3	N m/s		
V_dot	1	0.0000E+00	infinity	A	3	N m^3/s		
	the the		per limits i	1 0	rde	initial guesses a r for EES to con l error.		

The Formatted Equations window looks like this (the equations appear in much more readable format):

Finally, Calculate and Solve yields the solution:

D=0.025 [m] eps_by_D=0.004 f=0.02943 h_L=35 [m] L=20 [m] mu=0.001 [kg/(m*s)] Re=107627 rho=998 [kg/m^3] SigmaK=13.35 V=4.314 [m/s] V dot=0.002117 [m^3/s]

This is our final result, i.e., the volume flow rate through the pipe. We can verify that all the variables are correct, and are the same as those calculated by "hand", i.e.,

$$V_dot = 2.12 \times 10^{-3} \text{ m}^3/\text{s}$$