EES Solution for Example Problem – Parallel Pipe Network and Pump Bypass

Here is exactly what I typed into the main "Equations Window" of EES:

🖺 Equations Window							
"EES solution for the pump bypass in-class example problem, ME 33. Problem developed by Eric G. Paterson, March 2005, and modified by John M. Cimbala, March 2005."							
"Constants:"							
rho = 998 [kg/m [^] 3] "de mu = 1.00e-3 [kg/(m*s)] "vis g = g# "gra V_dot_d = 0.20 [m [^] 3/s] "de	nsity of the fluid" cosity of the fluid" witational constant, a predefined constant in EES" sired downstream volume flow rate (to be kept constant)"						
L_p = 3.0 [m] "pip L_b = 5.0 [m] "pip D_p = 0.5 [m] "pip D_b = 0.5 [m] "pip epsilon_p = 0.002 [m] "ave sigmaK_p = 0 "mi SigmaK_b = 2*1.0 + 2*0.2 + K_L_valve "mi "K_L_valve = 0.4" "NOTE: The above equation for SigmaK_b is is because we are going to construct a parameter then be solved by EES for each value of K_L_	p = 3.0 [m] "pipe length for the pump line" b = 5.0 [m] "pipe length for the pump line" .p = 0.5 [m] "pipe diameter for the pump line" .b = 5.0 [m] "pipe diameter for the pump line" .b = 0.5 [m] "pipe diameter for the bypass line" .silon_p = 0.002 [m] "average roughness height of the pump line pipe" .silon_b = 0.002 [m] "average roughness height of the bypass line pipe" gmaK_p = 0 "minor losses in the pump line (there are none)" gmaK_b = 2*1.0 + 2*0.2 + K_L_valve "minor losses in the bypass line (two branch tees, two elbows, and one valve)"						
"Pump performance curve (supply curve), as provided by the pump manufacturer:"							
a = 100 [m] b = 1.0 c = 1.0 [s^2/m^6] h_pump_u_supply = a*(b-c*V_dot_p^2)	"pump performance constant 1" "pump performance constant 2" "pump performance constant 3" "useful pump head supplied by the pump"						
"Equations:"							
V_dot_p = V_dot_b + V_dot_d V_dot_p = V_p*PI*D_p^2/4 V_dot_b = V_b*PI*D_b^2/4 h_L_p = (f_p*L_p/D_p + SigmaK_p)*V_p^2/(2* h_L_b = (f_b*L_b/D_b + SigmaK_b)*V_b^2/(2* h_pump_u_system = h_L_b + h_L_p Re_p = rho*D_p*V_p/mu Re_b = rho*D_b*V_b/mu h_pump_u_system = h_pump_u_supply 1/sqrt(f_p) = -2.0*log10(epsilon_b/D_b/3.7 + 2.9)	"conservation of mass equation" "volume flow rate in the pump line" "volume flow rate in the bypass line" g) "irreversible head loss in the pipe line" g) "irreversible head loss in the bypass line" "useful pump head required for the system" "Reynolds number in the pipe line" "Reynolds number in the pipe line" "Reynolds number in the bypass line" "conservation of energy equation (combination of two CVs)" 51/Re_p/sqrt(f_p)) "Colebrook equation for pump line" 51/Re_b/sqrt(f_b)) "Colebrook equation for bypass line"	~					

I created a parametric table, and selected four of the variables (<u>Table-New Parametric Table</u>):

Es Parametr	ic Table				
Table 1					I specified the values $of V$ ranging
120	¹ K _{L,valve} ⊻	2 . V _p [m³/s]	³ . V _d [m³/s]	⁴ .↓ ↓ [m ³ /s]	from the minimum of 0.2 (fully open gate valve) to a very large
Run 1	0.2	0.987	0.2	0.787	number (valve nearly
Run 2	0.3	0.9866	0.2	0.7866	closed).
Run 3	1	0.9838	0.2	0.7838	
Run 4	2	0.9799	0.2	0.7799	
Run 5	4	0.9722	0.2	0.7722	
Run 6	7	0.9611	0.2	0.7611	
Run 7	10	0.9505	0.2	0.7505	
Run 8	30	0.8901	0.2	0.6901	
Run 9	70	0.8045	0.2	0.6045	
Run 10	100	0.7584	0.2	0.5584	The rest of the
Run 11	300	0.5997	0.2	0.3997	automatically
Run 12	700	0.4865	0.2	0.2865	calculated and filled
Run 13	1000	0.4458	0.2	0.2458	in when you click
Run 14	3000	0.3487	0.2	0.1487	on the green arrow
Run 15	7000	0.2991	0.2	0.09915	at the upper left.
Run 16	10000	0.2834	0.2	0.08337	
Run 17	30000	0.2486	0.2	0.04862	
Run 18	300000	0.2155	0.2	0.0155	
Run 19	100000	0.2268	0.2	0.02678	
Run 20	300000	0.2155	0.2	0.0155	

Finally, I plotted all three of the dependent volume flow rates as functions of $K_{L,valve}$:

