Guidelines for Manipulating the Π Parameters

There are several guidelines for manipulating the Π parameters. These guidelines are listed concisely in Table 7-4 in the text, as summarized below: See Table 7-4 for more details.

- We may impose a constant (dimensionless) exponent on a Π or perform a functional operation on a Π.
- 2. We may multiply a Π by a pure (dimensionless) constant.
- 3. We may form a product (or quotient) of any Π with any other Π in the problem to replace one of the Π 's.
- 4. We may use any of guidelines 1 to 3 in combination.
- We may substitute a dimensional parameter in the Π with other parameter(s) of the same dimensions.

The goal is to get each Π into a form that looks like one of the common *established* nondimensional parameters that are listed in Table 7-5 in the text. Some of the most popular and often-used ones are listed below. A more exhaustive list is given in the text.

TABLE 7-5

Some common established nondimensional parameters or Π 's encountered in fluid mechanics and heat transfer*

Name	Definition	Ratio of Significance
Darcy friction factor	$f = \frac{8\tau_w}{\rho V^2}$	Wall friction force Inertial force
Drag coefficient	$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A}$	Drag force Dynamic force
Froude number	$Fr = \frac{V}{\sqrt{gL}} \left(\text{sometimes } \frac{V^2}{gL} \right)$	Inertial force Gravitational force
Lift coefficient	$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$	Lift force Dynamic force
Mach number	Ma (sometimes M) = $\frac{V}{c}$	Flow speed Speed of sound
Reynolds number	$Re = \frac{\rho VL}{\mu} = \frac{VL}{v}$	Inertial force Viscous force

Reynolds number is the most important nondimensional parameter in fluid mechanics.

Strouhal number St (sometimes S or Sr) = $\frac{fL}{V}$ Characteristic flow time Period of oscillation