Laminar Versus Turbulent Flow – A Comparison (Section 8-2, Çengel and Cimbala)

Laminar Flow	Turbulent Flow
Can be steady or unsteady.	Is always unsteady.
(Steady means that the flow field at any instant in time is the same as at any other instant in time.)	Why? There are always random, swirling motions (vortices or eddies) in a turbulent flow.
	<i>Note</i> : However, a turbulent flow can be steady <i>in the mean</i> . We call this a <i>stationary turbulent flow</i> .
Can be one-, two-, or three-dimensional.	Is always three-dimensional.
	Why? Again because of the random swirling eddies, which are in all directions.
	<i>Note</i> : However, a turbulent flow can be 1- D or 2-D <i>in the mean</i> .
Has regular, predictable behavior	Has irregular or <i>chaotic</i> behavior (cannot predict exactly – there is some randomness associated with any turbulent flow.
Dye trace	Dye trace

Analytical solutions are possible (see Chapter 9).

Occurs at *low* Reynolds numbers.

No analytical solutions exist! (It is too complicated, again because of the 3-D, unsteady, chaotic swirling eddies.)

Occurs at high Reynolds numbers.