

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

The Golden Crown

Hydrostatic Bodyfat Testing

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

Eric G. Paterson

Department of Mechanical and Nuclear Engineering The Pennsylvania State University

Spring 2005

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

The Golden Crown of Hiero II, King of Syracuse

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

The Golden Crown

Hydrostatic Bodyfat Testing

- Archimedes, 287-212 B.C.
- Hiero, 306-215 B.C.
- Hiero learned of a rumor where the goldsmith replaced some of the gold in his crown with silver. Hiero asked Archimedes to determine whether the crown was pure gold.
- Archimedes had to develop a nondestructive testing method!

The Golden Crown of Hiero II, King of Syracuse

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

The Golden Crown

Hydrostatic Bodyfat Testing

- The weight of the crown and nugget are the same in air: $W_c = \rho_c V_c = W_n = \rho_n V_n.$
- If the crown is pure gold, $\rho_c = \rho_n$ which means that the volumes must be the same, $V_c = V_n$.
- In water, the buoyancy force is $B = \rho_{H_2O}V.$
- If the scale becomes unbalance, this implies that the $V_c \neq V_n$, which in turn means that the $\rho_c \neq \rho_n$.
- Goldsmith was shown to be a fraud!

Hydrostatic Bodyfat Testing

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

The Golden Crown

Hydrostatic Bodyfat Testing

- What is the best way to measure body fat?
- Hydrostatic Bodyfat Testing using Archimedes Principle!
- Process
 - Measure body weight *W*. $W = \rho_{body} V.$
 - Get in tank, expel all air, and measure apparent weight W_a
 - Buoyancy force $B = W - W_a = \rho_{H_2O}V$. This permits computation of body volume.
 - Body density can be computed $\rho_{body} = \frac{W}{V}$.
 - Body fat can be computed from formulas.

Hydrostatic Bodyfat Testing

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

The Golden Crown

Hydrostatic Bodyfat Testing

	Population	Age	Gender	%BF	FFBd (g/cc)
ETHNICITY	African American	9.17	Female	(5.24 / Db) - 4.82	1.088
		19-45	Male	(4.86 / Db) - 4.39	1.106
		24-79	Female	(4.86 / Db) - 4.39	1.106
	American Indian	18-62	Male	(4.97 / Db) - 4.52	1.099
		18-60	Female	(4.81 / Db) - 4.34	1.108
	Asian				
	Japanese Native	18-48	Male	(4.97 / Db) - 4.52	1.099
			Female	(4.76 / Db) - 4.28	1.111
		61-78	Male	(4.87 / Db) - 4.41	1.105
			Female	(4.95 / Db) - 4.50	1.100
	Singaporean		Male	(4.94 / Db) - 4.48	1.102
	(Chinese, Indian, Malay)		Female	(4.84 / Db) - 4.37	1.107
	Caucasian	8-12	Male	(5.27 / Db) - 4.85	1.086
			Female	(5.27 / Db) - 4.85	1.086
		13-17	Male	(5.12 / Db) - 4.69	1.092
			Female	(5.19 / Db) - 4.76	1.090
		18-59	Male	(4.95 / Db) - 4.50	1.100
			Female	(4.96 / Db) - 4.51	1.101
		60-90	Male	(4.97 / Db) - 4.52	1.099
			Female	(5.02 / Db) - 4.57	1.098
	Hispanic		Male	NA	NA
		20-40	Female	(4.87 / Db) - 4.41	1.105
ATHLETES	Resistance trained	24 ± 4	Male	(5.21 / Db) - 4.78	1.089
		35 ± 6	Female	(4.97 / Db) - 4.52	1.099
	Endurance trained	21 ± 2	Male	(5.03 / Db) - 4.59	1.097
		21 ± 4	Female	(4.95 / Db) - 4.50	1.100
	All sports	18-22	Male	(5.12 / Db) - 4.68	1.093
		18-22	Female	(4.97 / Db) - 4.52	1.099
CLINICAL POPULATIONS**	Anorexia nervosa	15-44	Female	(4.96 / Db) - 4.51	1.101
	Cirrhosis				
	Childs A			(5.33 / Db) - 4.91	1.084
	Childs B			(5.48 / Db) - 5.08	1.078
	Childs C			(5.69 / Db) - 5.32	1.070
	Obesity	17-62	Female	(4.95 / Db) - 4.50	1.100
	Spinal cord injury (paraplegic/ quadriplegic)	18-73	Male	(4.67 / Db) - 4.18	1.116
		18-73	Female	(4.70 / Db) - 4.22	1.114

**There are insufficient multicorponent model data to estimate the average FFBd of the following clinical appulations: coronary artery disease, heart/lung transplarts, chronic obstructive putmonary disease, cystic fibrosis, diabetes mellitus, thyridi disease, HU/AUDS, cancer, kidney falure (dialysis), multiple scienceis, and muscular dystrophy.

For example

- women 8-12, $BF\% = \frac{5.27}{\rho_{body}} - 4.85.$ • women 18-59,
 - $BF\% = \frac{4.96}{\rho_{body}} 4.51.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hydrostatic Bodyfat Testing in Air?

ME 33, Fluid Flow Chapter 3: Examples of Archimedes Principle

The Golden Crown

Hydrostatic Bodyfat Testing

- Same methodology as Hydrostatic testing in water.
- What are the ramifications of using air?
 - Density of air is 1/1000th of water.
 - Temperature dependence of air.
 - Measurement of small volumes.
 - Used by NCAA Wrestling (there is a BodPod on PSU campus)!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●