Example — Laminar Pipe Flow; an Exact Solution of the Navier-Stokes Equation
(Example 9-18, Cengel and Cimbala)

Note: This is a classic problem in fluid mechanics.
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EXAMPLE 9-18 Fully Developed Flow in a Round Pipe—
Poiseuille Flow

Consider steady, incompressible, laminar flow of a Newtonian fluid in an infi-
nitely long round pipe of diameter D or radius £ = D/2 (Fig. 9-69). We
ignore the effects of gravity. A constant pressure gradient aF/ax is applied in
the x-direction,
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where x; and x, are two arbitrary locations along the x-axis, and P, and P,
are the pressures at those two locations. Note that we adopt a modified
cylindrical coordinate system here with x instead of z for the axial compo-
nent, namely, (r, #, X) and (u,, u, w). Derive an expression for the velocity
field inside the pipe and estimate the viscous shear force per unit surface

area acting on the pipe wall. | |¢is good practice to number the assumptions.

SOLUTION For flow inside a round pipe we are to calculate the velocity
field, and then estimate the viscous shear stress acting on the pipe wall.
Assumptions 1 The pipe is infinitely long in the x-direction. 2 The flow Is
steady (all partial time derivatives are zero). 3 This is a parallel flow (the
r-component of velocity, u,, is zero). 4 The fluid Is incompressible and New-
tonian with constant properties, and the flow is laminar. 5 A constant-pressure
gradient Is applied in the x-direction such that pressure changes linearly
with respect to x according to Eq. 1. 6 The velocity field is axisymmetric
with no swirl, implying that u, = 0 and all partial derivatives with respect to
# are zero. 7 We ignore the effects of gravity.



Analysis To obtain the velocity field, we follow the step-by-step procedure
outlined in Fig. S-50.

Step 1 Lay out the problem and the geometry. See Fig. 5-69.

Step 2 List assumptions and boundary conditions. We have listed seven
assumptions. The first boundary conditinj comes from imposing the no-slip
condition at the pipe wall: (1) at r= R, V = 0. The second boundary
condition comes from the fact that the centerline of the pipe Is an axis of
symmetry: (2) at r = O, du/dr = 0.

Step 3 Write out and simplify the differential equations. We start with the
iIncompressible continuity equation in cylindrical coordinates, a modified
version of Eq. 9-623,
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Equation 2 tells us that v is not a function of x. In other words, it doesn’t
matter where we place our origin—the flow is the same at any x-location.
This can also be inferred directly from assumption 1, which tells us that
there is nothing special about any x-location since the pipe is infinite in
length—the flow is fully developed. Furthermore, since v is not a function
of time (assumption 2) or # (assumption &), we conclude that i is at most
a function of r,

Result of continuity: u = u(r)only (3)
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This is a tremendous simplification, and allows us to solve the problem analytically!

We now simplify the axial momentum equation (a modified version of Eq.
8-62d) as far as possible:

When terms drop out, | like to
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As in Examples 9-15 through 9-17, the material acceleration (entire left
side of the x-momentum equation) is zero, implying that fluid particles are

not accelerating at all in this flow field, and linearizing the Navier-Stokes
equation (Fig. 9-70). We have replaced the partial derivative operators for
the u-derivatives with total derivative operators because of Eqg. 3.

In similar fashion, every term in the -momentum equation (Eq. 9-62b)
except the pressure gradient term is zero, forcing that lone term to also be
Zero,
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In other words, P is not a function of r. Since P is also not a function of
time (assumption 2) or # (assumption &), P can be at most a function of x,

Result of r-momentum: P = P{x) only (6)

Therefore, we can replace the partial derivative operator for the pressure
gradient in Eq. 4 by the total derivative operator since P varies only with x.
Finally, all terms of the #-component of the Navier-Stokes equation (Eq.
S-62Zc) go to zero.

Step4 Solve the differential equations. Continuity and r-momentum have
already been "solved,” resulting in Egs. 3 and 6, respectively. The
#-momentum equation has vanished, and thus we are left with Eqg. 4
(x-momentum). After multiplying both sides by r, we integrate once to obtain
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where C; is a constant of integration. Note that the pressure gradient dP/dx
Is a constant here. Dividing both sides of Eq. 7 by r, we integrate a second
time to get
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where C, is a second constant of integration.
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Notice that there are two constants of integration, since we had to integrate twice.
Equation 8 is the solution we are looking for, except we need to determine the
two constants of integration C, and C,.




Step 5 Apply boundary conditions. First, we apply boundary condition (2)
to Eq. 7,

Boundary condition (2): 0=0+ C, — C,=0

An alternative way to interpret this boundary condition is that v must
remain finite at the centerline of the pipe. This is possible only if constant
C, 1s equal to O, since In(O) is undefined in Eq. 8. Now we apply boundary
condition (1),
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Finally, Eq. 7 becomes
Answer
1 dP ,
Axial velocity: = — (r-— R7) o (9)
4 dx

The axial velocity profile is thus in the shape of a paraboloid, as sketched
in Fig. 9-71.

Step 6 \Verify the resulfs. You can verify that all the differential equations
and boundary conditions are satisfied.
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FIGURE 9-74

Axial velocity profile of Example
9—18: steady laminar flow in a long
round pipe with an applied constant-
pressure gradient dP/dx pushing fluid
through the pipe.




