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Introduction 
• Taguchi design arrays were introduced previously as a way to hunt intelligently for an optimum point.  
• Taguchi’s design arrays are not infallible, however, and may not always be practical to set up, since they 

work best with fairly large changes of the parameters.  
• There are other methods with which one can search or hunt for an optimum. One common method is called 

response surface methodology (RSM).  
• RSM is particularly useful for optimizing a running system. For example, suppose a power plant is running 

continuously. RSM can be used to optimize the efficiency or power output without large changes in the 
operating parameters, while continuing the operation without interruption.  

• The main advantage of RSM is that it can be done “on the fly” with small changes of the parameters. 
• A good reference for most of this material is Design and Analysis of Experiments, 4th ed., D. C. 

Montgomery, John Wiley and Sons, QA279.M66 1996, Ch. 14. 
 
Overview of the RSM Method 

• Suppose y = y(a, b, c, ...), where y is the outcome or result or response that is to be optimized, and there are 
n parameters, a, b, c, ..., which can be varied.  

• In these notes, it is assumed that the optimum y is the maximum y. A similar analysis can be performed for 
minimizing y.  

• The goal of RSM is to efficiently hunt for the optimum values of a, b, c, ... such that y is maximized.  
• RSM works by the method of steepest ascent, in which the parameters are varied in the direction of 

maximum increase of the response until the response no longer increases.  
• RSM is best illustrated by examples. First, some simple qualitative examples are given with 1 and 2 

parameters (n = 1 and n = 2), followed by a quantitative example with three parameters (n = 3). 
 

• Example for n = 1: [Note: This is only a qualitative example.] 
Given: Response y = y(a). Here, n = 1 since there is only one parameter in the problem. The experiments 

begin at some arbitrary operating point, i.e., at some value of a, a = a0. 
To do: Apply RSM to find the optimum value of y, i.e., find the value of 

parameter a where y is a maximum. 
Solution: 

 

a 

y 

a0 

o Imagine a plot of y as a function of a, with initial operating condition 
a0 indicated by the red dot on the plot to the right. 

o Note that in an actual experiment, such a plot would not be available, 
but is used here for illustrative purposes only.  

o With only one parameter (n = 1) as in this simple example, all one 
needs to know is whether to search to the left or to the right. One of 
these is the direction of steepest ascent.  

o To find this direction of steepest ascent, we measure y at some data 
points in the vicinity of a0, as illustrated by the blue dots in the plot to 
the right. Two other data points, in addition to that at a = a0 itself, are 
sufficient for this simple case.  

 

a 

y 

a0 

Slope 

Intercept 
o If there is a lot of scatter in the data, some replication may be required 

– take several measurements at the same value of a, and use the 
average measurement – this minimizes the effect of scatter.  

o A linear regression analysis is performed on the data, and the y 
intercept and slope are found, as sketched.  
 If the slope is positive (y increases with a), the direction of steepest ascent is to the right (towards 

increasing a).  
 If the slope is negative (y decreases with a), the direction of steepest ascent is to the left (towards 

decreasing a).  
o In this qualitative example, the slope is positive, so the direction of steepest ascent is to the right.  
o As seen on the above plot, this slope is very accurate near a = a0, but the inaccuracy increases when 

parameter a is far from a0. (At the maximum point, of course, the slope is actually zero.)  
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 o Nevertheless, it is assumed that the direction of steepest ascent points 

in the direction of the desired goal.  
o So, we then march in that direction (with some reasonable increment 

of parameter a) until y stops increasing (y levels off or starts 
decreasing), as sketched to the right. 

o After a few experimental runs, defined by the green dots on the plot, 
it is found that y reaches a maximum (the second red dot) at a = a .  

riginal operating point (at a = a0).  

1
o This operating point (at a = a1) may not be the true optimum, but it is 

certainly much closer than was the o
o We then repeat the RSM procedure, using a = a1 as the new starting point, to efficiently hunt for the 

optimum operating point.  
Discussion: In this simple example, we do not need to proceed any further, but the principles apply to an 

optimization problem with any number of parameters. Next, a more complicated case is examined. 
 

• Example for n = 2: [Note: This is also only a qualitative example.] 
Given: Response y = y(a, b). Here, n = 2 since there are two 

parameters in the problem. The experiments begin at some 
arbitrary operating point – at a = a0 and b = b0. 

To do: Apply RSM to find the optimum value of y, i.e., find 
the value of parameters a and b where y is a maximum. 

Solution: 
o Imagine a contour plot of y as a function of a and b, as 

sketched to the right. The maximum value of y is in the 
center of the contours. The initial operating condition at 
(a0, b0) is indicated by the red dot: 

o Note that in an actual experiment, such a plot would not be 
available, but is used here for illustrative purposes only.  

o With two parameters (n = 2), we need to find the direction 
of steepest ascent, which is now a vector, in the a-b plane. 

o To find this direction of steepest ascent, we measure y at 
several data points in the vicinity of (a0, b0), as illustrated 
by the blue dots on the contour plot to the right. 

o At least three data points, in addition to that at (a0, b0) 
itself, are required for a reasonable linear regression when 
n = 2. Four are shown here, but we recommend more than 
that if time and cost permit. 

o If there is scatter in the data, replication may be required.  
o A multiple variable linear regression analysis is 

performed on the data. (Multiple variable regression 
analysis is discussed in a previous learning module.)  

o The y intercept and two slopes are found (with respect to 
parameter a and with respect to parameter b). The vector produced by these slopes is sketched above.  
 If the slope with respect to parameter a is positive (y increases with a), the direction of steepest 

ascent is to the right (towards increasing a).  
 If the slope with respect to parameter a is negative (y decreases with a), the direction of steepest 

ascent is to the left (towards decreasing a).  
 If the slope with respect to parameter b is positive (y increases with b), the direction of steepest 

ascent is to the top (towards increasing b).  
 If the slope with respect to parameter b is negative (y decreases with b), the direction of steepest 

ascent is to the bottom (towards decreasing b).  
o With n = 2 parameters, however, we know more than simply the direction (right or left, up or down). We 

actually know the vector direction of steepest ascent, as sketched above.  
o Here the direction of steepest ascent is to the right and up, at some small angle above the horizontal.  
o As seen on the plot, this direction is very accurate near (a0, b0), but becomes more inaccurate when 

parameter a is far from a0 or parameter b is far from b0. (At the maximum point, of course, both slopes 
are zero.)  

o Nevertheless, it is assumed that the direction of steepest ascent points toward the desired goal.  

a0 

Steepest 
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o We must now choose some reasonable increments for both parameters. In practice, the increment for one 

of the parameters is chosen or picked, and that of the other parameter(s) is calculated based on the 
direction of steepest ascent. 

o Typically, the parameter with the largest magnitude of slope is the one for which the increment is 
chosen, but this is not a hard and fast rule. For the sake of argument, let us assume this is parameter a.  

o Increment Δa is chosen − not too small or too large, but a reasonable value, based on the experiment. 
 If the slope of y with respect to parameter a is positive, 

a positive value of Δa is chosen.  

a 

b 

a0 

b0 

a1 

b1 

 If the slope of y with respect to parameter a is negative, 
a negative value of Δa is chosen.  

o Once the increment in parameter a is chosen, the increment 
in parameter b is calculated, such that the vector (Δa, Δb) 
points in the direction of steepest ascent. 

o We now march in the direction of steepest ascent (the 
green dots in the sketch to the right) until y stops 
increasing (y levels off and then starts decreasing). 

o After a few experimental runs y reaches a maximum (the 
second red dot) at (a1, b1). (The next green dot has a lower 
value of y, as can be seen from the contour lines.)  

o This operating point (a1, b1) is not the true optimum, but it is much closer to the optimum than was the 
original operating point (a0, b0).  

o We then repeat the RSM procedure, using (a1, b1) as the new starting point, to efficiently hunt for the 
optimum operating point.   

a 

b 

a0 

b0 

a1 

b1 

o On the second pass, a new direction of steepest ascent is 
calculated from measurements at data points in the vicinity 
of (a1, b1), as indicated by the blue dots in the figure to the 
right. Here, four measurements are taken surrounding the 
red dot at (a1, b1). 

Steepest 
ascent 

o In the sketch, the new direction of steepest ascent is 
indicated by the red arrow.  

o We now march in this new direction until the response, y, 
starts to decrease, as previously.  

o Note: as the operating point gets closer and closer to the 
optimum point, we typically choose a smaller increment in 
the parameters.  

o As seen on the sketch, the true optimum point is still not found on this second pass, but we are closer! 
Discussion: This example is still only qualitative, but it helps us visualize the RSM process. 

 
The Mountain Analogy 

• Here is an analogy to help us better understand the philosophy of RSM.  
• Imagine a person walking up a mountain. Furthermore, suppose that it is very foggy on the mountain. The 

climber cannot see the mountain peak, and has only an altimeter and a compass to guide him. (An altimeter 
measures altitude or elevation.) His goal is to reach the top of the mountain.  

• From some arbitrary starting point, he can determine the direction of steepest ascent by measuring the 
elevation at several points close by. He notes the 
direction in which the compass points when he moves in 
the direction of steepest ascent, which is the direction of 
most rapid increase in elevation.  

N 
E 

Starting 
point 

Path • Then he walks in that direction (red arrow at the starting 
point), checking his altimeter each step of the way. The 
altimeter reading increases as he climbs − he is making 
progress.  

• He continues to climb in that same direction, with the 
help of his compass, until his altimeter shows decreasing 
altitude. Obviously, his first direction of steepest ascent is 
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no longer the correct direction of steepest ascent! (This is because the direction was determined only locally, 
around the original starting point, and he has now moved away from that point.)  

• At this point, he stops, determines a new direction of steepest ascent (second red arrow), and moves along 
that direction instead. The process is repeated.  

• Eventually, he will reach the top of the mountain (in a fairly efficient manner).  
• His path up the mountain is illustrated in the sketch by the dashed blue lines (compass directions of north and 

east are shown to provide a perspective view). The isocontour lines are contours of constant elevation. 
• The path to the top may not be the shortest possible, but it eventually gets him there − certainly faster than by 

trial and error! 
 
Coded Variables  

• In general, the units of parameters a, b, c, d, etc. differ from each other. Even if some of the parameters have 
the same units, not all of these parameters will be tested over the same range. For example, parameter a may 
be a voltage, with a range of 4 V, parameter b may be a length, with a range of 0.10 m, parameter c may be a 
length, with a range of 2.0 m, etc.  

• Since parameters a, b, c, d, etc. have different units and/or different ranges in the experimental data set, 
regression analysis should not be performed on the raw, physical (dimensional) parameters themselves. 
Instead, one must first normalize the parameters a, b, c, d, etc. before performing a regression analysis. 

• The normalized variables are called coded variables − dimensionless variables that range from −1 to 1.  
• Instead of using values of a, b, c, etc. directly in the regression analysis, coded variables, x1, x2, x3, etc. are 

used as the independent variables in the regression analysis. A coded variable must be defined for each of the 
physical variables:  
o x1 is defined for parameter a, 
o x2 is defined for parameter b, 
o x3 is defined for parameter c, etc. 

• Each of the coded variables is forced to range from −1 to 1, so that they all affect response y more evenly, 
and so the units and ranges of parameters a, b, c, etc. are irrelevant. 

• To convert parameter a to its coded variable x1, the following formula is applied to each value of a in the 

data set: mid value
1

range

2 a ax
a

⎛ ⎞−
= ⎜⎜

⎝ ⎠
⎟⎟ , where amid value is the middle value of a in the data set, min max

mid value 2
a aa +

=  

and arange is the range of parameter a from its minimum to its maximum, range max mina a a= − . 

• You can verify that amin maps into coded variable x1 = −1, amid value maps into coded variable x1 = 0, and amax 
maps into coded variable x1 = 1, for any set of values of parameter a, regardless of its range or units.  

• A similar equation is applied to the other parameters (b, c, ...) in the problem. For example, coded variables 

x2 and x3 are defined for each value of parameter b, mid value
2

range

2 b bx
b

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 and c, mid value

3
range

2 c cx
c

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

• Regression analysis must be performed on y as a function of x1, x2, x3, etc., not on the original variables, and 
the slopes with respect to these coded variables are used to determine the direction of steepest ascent. 

• When using coded variables, the vector of steepest ascent must then be converted back to the original 
(uncoded) physical variables, using the inverse of the above equations. In other words, the steepest ascent 
increment in x1 is converted to the corresponding increment in a, the steepest ascent increment in x2 is 
converted to the corresponding increment in b, etc., so that the marching process can be performed in 
physical variables.  

• For example, once the increment 1xΔ  in coded variable x1 is chosen, we must convert back to increment aΔ  

in the physical (uncoded) parameter a, using the following equation: range
12

a
a xΔ = Δ , with similar equations 

for the increments in b, c, ... etc. 
• Response surface methodology (RSM) and the use of coded variables is best illustrated by example. 

 
• Example: 

Given: A factory is continuously producing a product on an assembly line. Three parameters, a, b, and c, 
which may improve the quality of the product, are identified. Note: To simulate the experiment, a 
function y(a, b, c) has been created in an Excel spreadsheet. The function has nonlinear cross-talk 
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between the three parameters, and has random noise to simulate experimental error. The maximum value 
of the function is 300, which occurs at (a, b, c) = (15, 10, −5). For this example, pretend that this 
information is not known.  

o The system is currently operating at (a0, b0, c0) = (20, 6, −2). At this operating point, the goodness or 
quality y of the product is about 260.0 (in units which represent some measure of the quality).  

o The manager wants to improve the quality of the product (increase y) without shutting down the 
operation, and with only small changes at a time to the parameters, so as not to disrupt the production.  

To do: Use RSM to optimize (maximize) quality y. 
Solution: 
o Here, n = 3 (3 parameters), since y = y(a, b, c).  
o Following the RSM procedure, a linear regression analysis is to be performed on a cluster of data points 

in the vicinity of the initial operating point.  
o A 3-level, 3-parameter experimental design array is constructed, centered around the initial operating 

point. Note: A 3-level, 3-parameter Taguchi design array with each level of each parameter repeated 
twice is chosen here to generate the data cluster. It requires 6 data points (runs) in the vicinity of the 
initial operating point. The initial operating point value is also included in the regression analysis below, 
since that data point is also readily available. 

o It should be pointed out that in practice, a formal Taguchi design array may not be necessary. Instead, 
some random variations of each variable around the operating condition can produce an effective 
regression analysis. In cases where it is expensive and/or time consuming to change parameters, 
however, a Taguchi design array is advised in order to minimize the number of necessary runs.  

o Note also that for cases with large scatter in the data, several runs at a given operating condition should 
be recorded, so that the effect of random noise can be somewhat cancelled out.  

o For this simple example,  
 An increment of 2 units is chosen between the low and medium levels and between the medium and 

high levels for parameter a − the levels for parameter a are chosen to be 18, 20, and 22.  
 An increment of 0.5 units is chosen between the low and medium levels and between the medium 

and high levels for parameter b − the levels for parameter b are chosen to be 5.5, 6, and 6.5.  
 An increment of 1 unit 

is chosen between the 
low and medium levels 
and between the 
medium and high levels 
for parameter c − the 
levels for parameter c 
are chosen to be  −3,  
−2, and  −1.  

o The data appear to the right 
(the image is taken from an 
Excel spreadsheet), along 
with coded variables x1, x2, 
and x3 which have also been 
calculated in the 
spreadsheet. 

o A regression analysis is performed with the seven y values above (highlighted in turquoise) selected for 
Excel’s Input Y Range, and with the values of coded variables x1, x2, and x3 (highlighted in yellow) 
selected for Excel’s Input X Range. (A total of 21 X cells are 
highlighted – all seven rows of the coded variables.)  

o A portion of Excel’s regression analysis output is shown to the 
right, showing the calculated intercept and slopes, which Excel 
calls “X Variable 1”, “X Variable 2”, and “X Variable 3”. 

o The results of interest are the slopes of y with respect to coded 
variables x1, x2, and x3, which are approximately −17.5, 3.15, and −3.80 respectively, to three significant 
digits.  
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o Mathematically, these are partial derivatives of y with respect to x1, x2, and x3, 

1

17.5y
x
∂

= −
∂

, 
2

3.15y
x
∂

=
∂

, and 
3

3.80y
x
∂

= −
∂

.  

o These three values represent the direction of steepest ascent in terms of coded variables – the direction 

of steepest ascent is in the direction of vector 
1 2 3

, ,y y y
x x x

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

. 

o For this sample set of data, the direction of steepest ascent is in the direction of the vector  
(−17.5, 3.15, −3.80).  

o The magnitude of the vector is unimportant − it is the direction that really matters. Some authors like to 
convert the vector into a unit vector by dividing each component by the magnitude of the vector, but this 
is not really necessary. The unit vector for the above example is (−0.962, 0.173, −0.209), to three 
significant digits.  

o Since coded variable x1 (corresponding to uncoded physical parameter a) has the largest magnitude of 
slope in this example, coded variable x1 is chosen as the parameter for which to pick an increment. 

o An increment of −1.0 unit for coded variable x1 is chosen here, 1xΔ  = –1. 
o Note: Since the sign of the slope of y with respect to coded variable x1 is negative, a negative increment 

in coded variable x1 is chosen. If the slope had been positive, the increment in coded variable x1 would 
have been positive instead.  

o Based on this selected increment in coded variable x1, the increment in the other two coded variables x2 
and x3 must be calculated. This must be done carefully such that the direction of marching is the same as 
the direction of steepest ascent.  

o In other words, the increments in coded variables x2 and x3 are selected such that vector ( )1 2 3, ,x x xΔ Δ Δ  

points in the same direction as the vector 
1 2 3

, ,y y y
x x x

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

.  

o Simple formulas can be constructed to ensure proportionality of these vectors, namely, 

2 1
2 1

y yx x
x x
∂ ∂

Δ = Δ
∂ ∂

 and 3 1
3 1

y yx x
x x
∂ ∂

Δ = Δ
∂ ∂

, from which we can calculate the increment in coded 

variables x2 and x3 for a chosen value of the increment in coded variable x1. 
o Using the above equations, the increments in coded variables x2 and x3 are calculated for our example to 

be ( )2 1
2 1

3.151 0.
17.5

y yx x
x x
∂ ∂

Δ = Δ = − =
∂ ∂ −

180  and ( )3 1
3 1

3.801 0
17.5

y yx x
x x

−∂ ∂ .217Δ = − = −
∂ ∂ −

Δ = , to three 

significant digits.  
o Notice that the signs (+ or −) of the increments are automatically taken care of, provided that the signs of 

the derivatives and the increments are included properly in the calculations, as above.  
o We must recognize that these are increments in the coded variables. To march in the direction of steepest 

ascent, we must first convert back to increments in the physical (dimensional) variables, a, b, and c.  
o Using the conversions defined above, the increments in parameters a, b, and c are calculated to be 

( )range
1

4 1 2
2 2

a
a xΔ = Δ = − = − , ( )range

2
1 0.180 0.090

2 2
b

b xΔ = Δ = = , ( )range
3

2 0.217 0.217
2 2

c
c xΔ = Δ = − = − , 

which are rounded off to −2.0, 0.1, and −0.2 respectively for 
convenience and simplicity in the next step of the RSM 
calculations.  

o The direction of steepest ascent in the original (dimensional, un-
coded, physical) variables has now been found – the direction in 
which parameters a, b, and c are incremented by approximately 
−2.0, 0.1, and −0.2, respectively, that is, 2aΔ = − , 0.1bΔ = , and 

. 0.2cΔ = −
o Now all three parameters are incremented simultaneously, and y is 

measured. This marching process is continued until y begins to 
decrease. The Excel cells that show this are indicated to the right. 
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o Notice that the starting point is at (20, 6, −2), the original operating conditions, at which the result (y) is 

approximately 260. Parameter a is incremented by −2.0, parameter b by 0.1, and parameter c by −0.2. 
The marching is done with all three variables simultaneously, in the direction of steepest ascent.  

o The response, y, increases with each increment until the highlighted row, after which it begins to 
decrease. The response surface methodology (RSM) procedure has successfully increased response y 
from an initial value of around 260 to a new value of around 287. We have improved the response. 

o The new suggested operating condition is at (a, b, c) = (14.0, 6.3, −2.6), where y is around 287. This can 
be compared with the actual optimum (which we are pretending that we don’t know), at (a, b, c) = (15, 
10, −5), where y is 300. While not at the exact optimum, the operation has moved much closer than 
previously.  

o At this point, further 
optimization is performed 
by starting RSM over at 
this new operating 
condition.  

o A new Taguchi design 
array is constructed locally, 
centered around the new 
operating point (14.0, 6.3, 
−2.6) as shown to the right. 

o Notice that a smaller 
increment in each variable 
was chosen for this second 
round of tests (e.g., 1.0 
instead of 2.0 for 
parameter a), since we are 
closer to the optimum point, and will need to calculate the slopes 

o 
t. 

o  
, and x , which are now 1.11, 1.51, and −

respectively, 

more precisely this time.  
Note also that coded variables x1, x2, and x3 are once again 
calculated for each a, b, and c in the new experimental data se

o From these data, a second regression analysis is performed.  
The results of interest are the slopes of y with respect to coded
variables x1, x 0.601 2 3

1x∂
1.11y∂

= , 
2x∂

1.51y∂
= , and 

3x∂
This time, coded variable x2 has the largest magnitude of slope. Coded variab

0.601y∂
= − , as shown to the right. 

o le x2 (or its corresponding 

o We select an increment of Δb or which the increment for coded variable x2 is calculated as 
physical variable b) is thus the variable for which we choose the increment. 

 = 0.1, f

2
range 0.6b

Based on this selected incremen

0.12 2 0.333bx Δ
Δ = = = . 

o t in x , the increment in the other two coded variables must be calculated 

in the same manner as above,  

2

( )1 2
1 2

1.110.333 0.245
1.51

y yx x
x x
∂ ∂

Δ = Δ = =
∂ ∂

 and 

( )3 2
3 2 1.51

0.6010.333 0.133y yx x
x x

−∂ ∂
Δ = Δ = = − , to three significant digits. 

o oint has now been found, in terms 

variables. We must now convert back to physical variables: 

∂ ∂
A new direction of steepest ascent from this new operating p of coded 

( )range
1

2 0.245 0.245
2 2

a
a xΔ = Δ = = , and 

( )range
3

0.6 0.133 0.040
2 2

c
c xΔ = Δ = − = − . [Recall that Δb has already been chosen as Δb = 0.1.]  
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o These increments in the physical variables are rounded off to Δa = 0.25, Δb = 0.1, and Δc = −0.04 

respectively for convenience and simplicity in the next step of the 
RSM calculations. 

o Thus, the direction of steepest ascent in terms of physical 
parameters a, b, and c is the direction in which parameters a, b, 
and c are incremented by approximately Δa = 0.25, Δb = 0.1, and 
Δc = −0.04. 

o Now all three parameters are incremented simultaneously, and y is 
measured, as previously. This process is continued until y begins 
to decrease. The Excel cells which show this are indicated to the 
right. 

o Notice that the starting point is at (14.0, 6.3, -2.6), the second set 
of operating conditions. Parameter a is incremented by 0.25 units, 
parameter b by 0.1 units, and parameter c by -0.04 units. The 
marching is done by incrementing all three variables 
simultaneously, in the direction of steepest ascent.  

o The response, y, increases with each increment until the 
highlighted row, after which it begins to decrease. The response surface methodology (RSM) procedure 
has successfully increased response y from an initial value of around 260 to a value of around 287, and 
now to a value of around 290.  

o Further optimization can be performed by starting RSM over at this new maximum operating condition.  
o At this point, since the optimum value is probably not too far away, we should use even smaller 

increments in the parameters (take data closer to the current operating point) in order to determine the 
direction of steepest ascent more accurately.  

o Note that one soon encounters diminishing returns. The true optimum may never be found precisely 
using RSM, due to randomness in the response.  

o When one is close to the optimum, it is wise to either use a larger design array, or to replicate – repeat 
the measurements several times before performing the regression analysis. This reduces the effect of 
random noise errors.  

o In this example, the RSM procedure was performed one more time (not shown, but available on the 
Excel spreadsheet that goes along with this learning module. The final optimum value of result y is 
around 298.5 at operating conditions (13.9, 9.2, −4.6).  

o This result is compared to the (known) analytical result, ymax = 300.0 at (15, 10, −5). [Recall that an 
analytical function, with random noise, was created for the Excel spreadsheet in order to simulate this 
experiment. The RSM was performed, however, without any knowledge of the analytical result.]  

Discussion: The RSM result is not perfect, but the new operating conditions are very close to the actual 
optimum values. RSM has been used successfully to optimize result y in this example. 

 
Final Comments 

• In the above example, the point of diminishing returns of the RSM technique may have been reached.  
• Further improvement is possible only by the following techniques:  

o Take data around a smaller region in the vicinity of the current operating point. This increases the 
accuracy of using linear regression analysis to calculate the direction of steepest ascent.  

o Replicate the data. This helps to cancel the effect of random noise (experimental error).  
o Use a higher-order regression scheme. Note that here only a linear (first-order) regression analysis has 

been used. We can instead use a second-order or higher-order regression analysis (as discussed in a 
previous learning module). Some RSM schemes have been devised which can even take into account 
cross-talk between variables. These are beyond the scope of this learning module.  

• A caution about response surface methodology must be given here: 
o RSM will always find a local maximum response. If there is more than one peak in the function, one of 

the other peaks may have a larger value of y. In other words, the local maximum response determined 
by RSM may not necessarily be the optimum response!  

o Returning to the mountain analogy above, the mountain climber may reach a local peak in the mountain, 
but when the fog clears, he sees that there is an even higher peak somewhere else!  

o If this happens, a different starting point must be selected, and the RSM process must be repeated. 
• Overall, however, RSM is a very powerful technique for optimizing a response. 


