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Introduction  
 Consider a set of n measurements of some variable y as a function of another variable x.  
 Typically, y is some measured output as a function of some known input, x. Recall that the linear 

correlation coefficient is used to determine if there is a trend.  
 If there is a trend, regression analysis is useful. Regression analysis is used to find an equation for y as a 

function of x that provides the best fit to the data.  
 
Linear regression analysis 

 Linear regression analysis is also called linear least-squares fit analysis.  
 The goal of linear regression analysis is to find the “best fit” straight line through a set of y vs. x data.  
 The technique for deriving equations for this best-fit or least-squares fit line is as follows:  

o An equation for a straight line that attempts to fit the data pairs is chosen as Y ax b  . 
o In the above equation, a is the slope (a = dy/dx – most of us are more familiar with the symbol m rather 

than a for the slope of a line), and b is the y-intercept – the y location where the line crosses the y axis (in 
other words, the value of Y at x = 0).  

o An upper case Y is used for the fitted line to distinguish the fitted data from the actual data values, y.  
o In linear regression analysis, coefficients a and b are optimized for the best possible fit to the data.  
o The optimization process itself is actually very straightforward:  
o For each data pair (xi, yi), error ei is defined as the difference between the predicted or fitted value and 

the actual value: ei = error at data pair i, or i i i i ie Y y ax b y     . ei is also called the residual. Note: 
Here, what we call the actual value does not necessarily mean the “correct” value, but rather the value of 
the actual measured data point.  

o We define E as the sum of the squared errors of the fit – a global measure of the error associated with 

all n data points. The equation for E is  22
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o It is now assumed that the best fit is the one for which E is the smallest.  
o In other words, coefficients a and b that minimize E need to be found. These coefficients are the ones 

that create the best-fit straight line Y = ax + b.  
o How can a and b be found such that E is minimized? Well, as any good engineer or mathematician 

knows, to find a minimum (or maximum) of a quantity, that quantity is differentiated, and the derivative 
is set to zero.  

o Here, two partial derivatives are required, since E is a function of two variables, a and b. Therefore, we 
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o After some algebra, which can be verified, the following equations result for coefficients a and b: 
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 Coefficients a and b can easily be calculated in a spreadsheet by the following steps: 
o Create columns for xi, yi, xiyi, and xi

2. 
o Sum these columns over all n rows of data pairs. 
o Using these sums, calculate a and b with the above formulas.  

 Modern spreadsheets and programs like Matlab, MathCad, etc. have built-in regression analysis tools, but it 
is good to understand what the equations mean and from where they come. In the Excel spreadsheet that 
accompanies this learning module, coefficients a and b are calculated two ways for each example case – “by 
hand” using the above equations, and with the built-in regression analysis package. As can be seen, the 
agreement is excellent, confirming that we have not made any algebra mistakes in the derivation. 
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 Example: 
Given: 20 data pairs (y vs. x)  the same data used in a previous example problem in the learning module 

about correlation and trends. Recall that we calculated the linear correlation coefficient to be rxy = 0.480. 
The data pairs are listed below, along with a scatter plot of the data. 

 

 
 

To do: Find the best linear fit to the data. 
Solution: 
o We use the above equations for coefficients a and b with n = 20; we calculate a = 3.241, and b = 4.082, 

to four significant digits. Thus, the best linear fit to the data is 3.241 4.082Y x  . 
o Alternately, using Excel’s built-in regression analysis macro, the following output is generated: 

 Office 2003 and older: Tools-Data Analysis-Regression 

 Office 2007 and later: Data tab. In Analysis area, Data Analysis-Regression  
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o In Excel’s notation, the y-intercept b is in the row called “Intercept” and the column called 
“Coefficients”. The slope a is in the row called “X Variable 1” and the same column (“Coefficients”). 
The values agree with those calculated from the equations above, verifying our algebra.  

o Notice also the item called “Multiple R”. In Excel, Multiple R is the absolute value of the linear 
correlation coefficient, rxy. For these example data, rxy was calculated previously as 0.480, which agrees 
with the result from Excel’s regression analysis (to about 7 significant digits anyway).  

o The best-fit line is plotted in the above figure as the solid blue line. 
o The best-fit line (compared to any other line) has the smallest possible sum of the squared errors, E, 

since coefficients a and b were found by minimizing E (forcing the derivatives of E with respect to a and 
b to be equal to zero).  

o The upward trend of the data appears more obvious by eye when the least-squares line is drawn through 
the data.  

Discussion: Recall from the previous example problem that we could not judge by eye whether or not there 
is a trend in these data. In the previous problem we calculated the linear correlation coefficient and 
showed that we can be more than 95% confident that a trend exists in these data. In the present problem, 
we found the best-fit straight line that quantifies the trend in the data. 

 

Standard error 
 A useful measure of error is called the standard error of estimate, Sy,x, which is sometimes called simply 

standard error. For a linear fit, 
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 Sy,x is a measure of the data scatter about the best-fit line, and has the same units as y itself.  
 Sy,x is a kind of “standard deviation” of the predicted least-squares fit values compared to the original data. 
 Sy,x for this problem turns out to be about 3.601 (in y units), as verified both by calculation with the above 

formula and by Excel’s regression analysis summary. (See Excel’s Summary Output above – Standard Error 
= 3.600806.) 

 

Some cautions about using linear regression analysis 
 Scatter in the y data is assumed to be purely random. The scatter is assumed to follow a normal or Gaussian 

distribution. This may not actually be the case. For example, a jump in y at a certain x value may be due to 
some real, repeatable effect, not just random noise.  

 The x values are assumed to be error-free. In reality, there may be errors in the measurement of x as well as 
y. These are not accounted for in the simple regression analysis described above. (More advanced regression 
analysis techniques are available that can account for this.)  

 The reverse equation is not guaranteed. In particular, the linear least-squares fit for y versus x was found, 
satisfying the equation Y = ax + b. The reverse of this equation is  1x a Y b a  . This reverse equation is 

not necessarily the best fit of x vs. y, if the linear regression analysis were done on x vs. y instead of y vs. x.  
 The fit is strongly affected by erroneous data points. If there are some data points that are far out of line 

with the majority (outliers), the least-squares fit may not yield the desired result. The following example 
illustrates this effect: 
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o With all the data points used, the three stray data points (outliers) have ruined the rest of the fit (solid 
blue line). For this case, rxy = 0.5745 and Sy,x = 4.787. 

o If these three outliers are removed, the least-squares fit follows the overall trend of the other data points 
much more accurately (dashed green line).  For this case, rxy = 0.9956 and Sy,x = 0.5385. The linear 
correlation coefficient is significantly higher (better correlation), and the standard error is significantly 
lower (better fit). 

o In a separate learning module we discuss techniques for properly removing outliers. 
o To protect against such undesired effects, more complex least-squares methods, such as the robust 

straight-line fit, are required. Discussion of these methods are beyond the scope of the present course.  
 
Linear regression with multiple variables 

 Linear regression with multiple variables is a feature included with most modern spreadsheets.  
 Consider response, y, which is a function of m independent variables x1, x2, ..., xm, i.e., y = y(x1, x2, ..., xm).  
 Suppose y is measured at n operating points (n sets of values of y as a function of each of the other variables).  
 To perform a linear regression on these data using Excel, select the cells for y (in one column as previously), 

and a range of cells for x1, x2, ..., xm (in multiple columns), and then run the built-in regression analysis.  
 When there is more than one independent variable, we use a more general equation for the standard error,  
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, where df = degrees of freedom, df ( 1)n m   , n is the number of data points or 

operating points, and m is the number of independent variables. 
 

 Example: 
Given: In this example, we perform linear regression analysis with multiple variables. 
o We assume that the measured quantity y is a linear function of three independent variables, x1, x2, and x3, 

i.e., 1 1 2 2 3 3y b a x a x a x    .  
o Nine data points are measured by setting three levels for 

each parameter, and the data are placed into a simple 
data array as shown to the right (the image is taken 
from an Excel spreadsheet). 

To do: Calculate the y intercept and the three slopes 
simultaneously, one slope for each independent variable 
x1, x2, and x3. 

Solution: 
o We perform a linear regression on these data points to 

determine the best (least-squares) linear fit to the data.  
o In Excel, the multiple variable regression analysis procedure is similar to that for a single independent 

variable, except that we choose several columns of x data instead of just one column: 
 Launch the macro (Data Analysis-Regression). The default options are fine for illustrative purposes.  
 The nine values of y in the y-column are selected for Input Y range.  
 All 27 values of x1, x2, and x3, spanning nine rows and three columns, are selected for Input X range.  
 Output Range is selected, and some suitable cell is selected for placement of the output. OK.  
 Excel generates what it calls a Summary Output. 

o From Excel’s output, the following information is needed to generate the coefficients of the equation for 
which we are finding the best fit, 1 1 2 2 3 3y b a x a x a x    : 

 The y-intercept, which Excel calls Intercept. For our equation,  Interceptb  . 
 The three slopes, which Excel calls X Variable 1, X Variable 2, and X Variable 3. For our equation, 
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of y with respect to parameters x1, x2, and x3, respectively.  
o Note that we use partial derivatives () rather than total derivatives (d) here, since y is a function of more 

than one variable. 
o A portion of the regression analysis results are shown below (image copied from Excel), with the most 

important cells highlighted: 
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Discussion: The fit is pretty good, implying that there is little scatter in the data, and the data fit well with the 
simple linear equation. We know this is a good fit by looking at the linear correlation coefficient 
(Multiple R), which is greater than 0.99, and the Standard Error, which is only 0.21 for y values ranging 
from about 4 to about 15. We can claim a successful curve fit. 

Comments: 
o In addition to random scatter in the data, there may also be cross-talk between some of the parameters. 

For example, y may have terms with products like x1x2, x2x3
2, etc., which are clearly nonlinear terms. 

Nevertheless, a multiple parameter linear regression analysis is often performed only locally, around the 
operating point, and the linear assumption is reasonably accurate, at least close to the operating point.  

o In addition, variables x1, x2, and x3 may not be totally independent of each other in a real experiment. 
o Regression analysis with multiple variables becomes quite useful to us later in the course when we 

discuss optimization techniques such as response surface methodology.  
 
Nonlinear and higher-order polynomial regression analysis  

 Not all data are linear, and a straight line fit may not be appropriate. A good example is thermocouple 
voltage versus temperature. The relationship is nearly linear, but not quite; that is in fact the very reason for 
the necessity of thermocouple tables.  

 For nonlinear data, some transformation tricks can be employed, using logarithms or other functions.  
 For some data, a good curve fit can be obtained using a polynomial fit of some appropriate order. The order 

of a polynomial is defined by m, the maximum exponent in the x data:  
o zeroth-order (m = 0) is just a constant: y b . 

o first-order (m = 1) is a constant plus a linear term: 1y b a x  . (A first-order polynomial fit is the same 
as a linear least-squares fit, as we have already learned how to do.)  

o second-order (m = 2) is a constant plus a linear term plus a quadratic term: 2
1 2y b a x a x   . (A 

second-order polynomial fit is often called a quadratic fit.)  

o third-order (m = 3) adds a cubic term: 2 3
1 2 3y b a x a x a x    . (A third-order polynomial fit is often 

called a cubic fit.)  

o mth-order (m > 0) adds terms following this pattern up to amxm: 2 3
1 2 3 ... m

my b a x a x a x a x      . 
 Excel can be manipulated to perform least-squares polynomial fits of any order m, since Excel can perform 

regression analysis on more than one independent variable simultaneously. The procedure is as follows:  
o To the right of the x column, add new columns for x2, x3, ... xm.  
o Perform a multiple variable regression analysis as previously, except choose all the data cells (x, x2, x3, ... 

xm) as the “Input X Range” in the Regression working window.  
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o Note that m is the order of the polynomial, which is also treated as the number of independent variables 
to be fit. Excel treats each of the m columns as a separate variable. The output of the regression analysis 
includes the y-intercept as previously (equal to our constant b), and also a least-squares coefficient for 
each of the columns, i.e., for each of the variables x, x2, x3, ... xm: 
 The coefficient for “X Variable 1” is a1, corresponding to the x variable.  
 The coefficient for “X Variable 2” is a2, corresponding to the x2 variable.  
 The coefficient for “X Variable 3” is a3, corresponding to the x3 variable.  
 ...  
 The coefficient for “X Variable m” is am, corresponding to the xm variable.  

o Finally, the fitted curve is constructed from the equation, i.e., 2 3
1 2 3 ... m

my b a x a x a x a x      . 
 

 Example: 
Given: x and y data pairs, as shown: 

 

  
 

 

To do: Plot the data as symbols (no line), perform a linear least-squares fit, and plot the data as a dashed line 
(no symbols), and perform a second-order polynomial least-squares fit, and plot the data as a solid line 
(no symbols). 

Solution: 
o We plot the data as symbols, as shown on the above plot.  
o We perform a standard linear regression analysis, and then generate the best-fit line by using the 

equation for the best-fit straight line, Y ax b  . For these data, a = 1.025 and b = 1.510. The result is 
plotted as the dashed black line in the figure – the agreement is not so good. The standard error is 0.1359. 

o We add a column labeled x2 between the x and y columns, and fill it in. 
o We perform a multiple variable regression analysis, using the x and x2 columns as our range of 

independent variables. We generate the best-fit quadratic (2nd-order) polynomial curve by using the 

equation 2
1 2y b a x a x   . For these data, b = 1.307, a1 = 2.382, and a2 = –1.358. The solid red line is 

plotted above for this equation – the agreement is much better. The standard error is 0.0316. 
Discussion: These data fit much better to a second-order polynomial than to a linear fit. We see this both “by 

eye”, and also by comparing the standard error, which decreases by a factor of more than four when we 
apply the quadratic (second-order) curve fit instead of the linear curve fit. 


