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Introduction  
 Consider a set of n measurements of some variable y as a function of another variable x.  
 Typically, y is some measured output as a function of some known input, x. Recall that the linear 

correlation coefficient is used to determine if there is a trend.  
 If there is a trend, regression analysis is useful. Regression analysis is used to find an equation for y as a 

function of x that provides the best fit to the data.  
 
Linear regression analysis 

 Linear regression analysis is also called linear least-squares fit analysis.  
 The goal of linear regression analysis is to find the “best fit” straight line through a set of y vs. x data.  
 The technique for deriving equations for this best-fit or least-squares fit line is as follows:  

o An equation for a straight line that attempts to fit the data pairs is chosen as Y ax b  . 
o In the above equation, a is the slope (a = dy/dx – most of us are more familiar with the symbol m rather 

than a for the slope of a line), and b is the y-intercept – the y location where the line crosses the y axis (in 
other words, the value of Y at x = 0).  

o An upper case Y is used for the fitted line to distinguish the fitted data from the actual data values, y.  
o In linear regression analysis, coefficients a and b are optimized for the best possible fit to the data.  
o The optimization process itself is actually very straightforward:  
o For each data pair (xi, yi), error ei is defined as the difference between the predicted or fitted value and 

the actual value: ei = error at data pair i, or i i i i ie Y y ax b y     . ei is also called the residual. Note: 
Here, what we call the actual value does not necessarily mean the “correct” value, but rather the value of 
the actual measured data point.  

o We define E as the sum of the squared errors of the fit – a global measure of the error associated with 

all n data points. The equation for E is  22
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o It is now assumed that the best fit is the one for which E is the smallest.  
o In other words, coefficients a and b that minimize E need to be found. These coefficients are the ones 

that create the best-fit straight line Y = ax + b.  
o How can a and b be found such that E is minimized? Well, as any good engineer or mathematician 

knows, to find a minimum (or maximum) of a quantity, that quantity is differentiated, and the derivative 
is set to zero.  

o Here, two partial derivatives are required, since E is a function of two variables, a and b. Therefore, we 

set 0
E

a





 and 0

E

b





. 

o After some algebra, which can be verified, the following equations result for coefficients a and b: 
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 Coefficients a and b can easily be calculated in a spreadsheet by the following steps: 
o Create columns for xi, yi, xiyi, and xi

2. 
o Sum these columns over all n rows of data pairs. 
o Using these sums, calculate a and b with the above formulas.  

 Modern spreadsheets and programs like Matlab, MathCad, etc. have built-in regression analysis tools, but it 
is good to understand what the equations mean and from where they come. In the Excel spreadsheet that 
accompanies this learning module, coefficients a and b are calculated two ways for each example case – “by 
hand” using the above equations, and with the built-in regression analysis package. As can be seen, the 
agreement is excellent, confirming that we have not made any algebra mistakes in the derivation. 
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 Example: 
Given: 20 data pairs (y vs. x)  the same data used in a previous example problem in the learning module 

about correlation and trends. Recall that we calculated the linear correlation coefficient to be rxy = 0.480. 
The data pairs are listed below, along with a scatter plot of the data. 

 

 
 

To do: Find the best linear fit to the data. 
Solution: 
o We use the above equations for coefficients a and b with n = 20; we calculate a = 3.241, and b = 4.082, 

to four significant digits. Thus, the best linear fit to the data is 3.241 4.082Y x  . 
o Alternately, using Excel’s built-in regression analysis macro, the following output is generated: 

 Office 2003 and older: Tools-Data Analysis-Regression 

 Office 2007 and later: Data tab. In Analysis area, Data Analysis-Regression  
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o In Excel’s notation, the y-intercept b is in the row called “Intercept” and the column called 
“Coefficients”. The slope a is in the row called “X Variable 1” and the same column (“Coefficients”). 
The values agree with those calculated from the equations above, verifying our algebra.  

o Notice also the item called “Multiple R”. In Excel, Multiple R is the absolute value of the linear 
correlation coefficient, rxy. For these example data, rxy was calculated previously as 0.480, which agrees 
with the result from Excel’s regression analysis (to about 7 significant digits anyway).  

o The best-fit line is plotted in the above figure as the solid blue line. 
o The best-fit line (compared to any other line) has the smallest possible sum of the squared errors, E, 

since coefficients a and b were found by minimizing E (forcing the derivatives of E with respect to a and 
b to be equal to zero).  

o The upward trend of the data appears more obvious by eye when the least-squares line is drawn through 
the data.  

Discussion: Recall from the previous example problem that we could not judge by eye whether or not there 
is a trend in these data. In the previous problem we calculated the linear correlation coefficient and 
showed that we can be more than 95% confident that a trend exists in these data. In the present problem, 
we found the best-fit straight line that quantifies the trend in the data. 

 

Standard error 
 A useful measure of error is called the standard error of estimate, Sy,x, which is sometimes called simply 

standard error. For a linear fit, 
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 Sy,x is a measure of the data scatter about the best-fit line, and has the same units as y itself.  
 Sy,x is a kind of “standard deviation” of the predicted least-squares fit values compared to the original data. 
 Sy,x for this problem turns out to be about 3.601 (in y units), as verified both by calculation with the above 

formula and by Excel’s regression analysis summary. (See Excel’s Summary Output above – Standard Error 
= 3.600806.) 

 

Some cautions about using linear regression analysis 
 Scatter in the y data is assumed to be purely random. The scatter is assumed to follow a normal or Gaussian 

distribution. This may not actually be the case. For example, a jump in y at a certain x value may be due to 
some real, repeatable effect, not just random noise.  

 The x values are assumed to be error-free. In reality, there may be errors in the measurement of x as well as 
y. These are not accounted for in the simple regression analysis described above. (More advanced regression 
analysis techniques are available that can account for this.)  

 The reverse equation is not guaranteed. In particular, the linear least-squares fit for y versus x was found, 
satisfying the equation Y = ax + b. The reverse of this equation is  1x a Y b a  . This reverse equation is 

not necessarily the best fit of x vs. y, if the linear regression analysis were done on x vs. y instead of y vs. x.  
 The fit is strongly affected by erroneous data points. If there are some data points that are far out of line 

with the majority (outliers), the least-squares fit may not yield the desired result. The following example 
illustrates this effect: 
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o With all the data points used, the three stray data points (outliers) have ruined the rest of the fit (solid 
blue line). For this case, rxy = 0.5745 and Sy,x = 4.787. 

o If these three outliers are removed, the least-squares fit follows the overall trend of the other data points 
much more accurately (dashed green line).  For this case, rxy = 0.9956 and Sy,x = 0.5385. The linear 
correlation coefficient is significantly higher (better correlation), and the standard error is significantly 
lower (better fit). 

o In a separate learning module we discuss techniques for properly removing outliers. 
o To protect against such undesired effects, more complex least-squares methods, such as the robust 

straight-line fit, are required. Discussion of these methods are beyond the scope of the present course.  
 
Linear regression with multiple variables 

 Linear regression with multiple variables is a feature included with most modern spreadsheets.  
 Consider response, y, which is a function of m independent variables x1, x2, ..., xm, i.e., y = y(x1, x2, ..., xm).  
 Suppose y is measured at n operating points (n sets of values of y as a function of each of the other variables).  
 To perform a linear regression on these data using Excel, select the cells for y (in one column as previously), 

and a range of cells for x1, x2, ..., xm (in multiple columns), and then run the built-in regression analysis.  
 When there is more than one independent variable, we use a more general equation for the standard error,  
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, where df = degrees of freedom, df ( 1)n m   , n is the number of data points or 

operating points, and m is the number of independent variables. 
 

 Example: 
Given: In this example, we perform linear regression analysis with multiple variables. 
o We assume that the measured quantity y is a linear function of three independent variables, x1, x2, and x3, 

i.e., 1 1 2 2 3 3y b a x a x a x    .  
o Nine data points are measured by setting three levels for 

each parameter, and the data are placed into a simple 
data array as shown to the right (the image is taken 
from an Excel spreadsheet). 

To do: Calculate the y intercept and the three slopes 
simultaneously, one slope for each independent variable 
x1, x2, and x3. 

Solution: 
o We perform a linear regression on these data points to 

determine the best (least-squares) linear fit to the data.  
o In Excel, the multiple variable regression analysis procedure is similar to that for a single independent 

variable, except that we choose several columns of x data instead of just one column: 
 Launch the macro (Data Analysis-Regression). The default options are fine for illustrative purposes.  
 The nine values of y in the y-column are selected for Input Y range.  
 All 27 values of x1, x2, and x3, spanning nine rows and three columns, are selected for Input X range.  
 Output Range is selected, and some suitable cell is selected for placement of the output. OK.  
 Excel generates what it calls a Summary Output. 

o From Excel’s output, the following information is needed to generate the coefficients of the equation for 
which we are finding the best fit, 1 1 2 2 3 3y b a x a x a x    : 

 The y-intercept, which Excel calls Intercept. For our equation,  Interceptb  . 
 The three slopes, which Excel calls X Variable 1, X Variable 2, and X Variable 3. For our equation, 
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, which are the slopes 

of y with respect to parameters x1, x2, and x3, respectively.  
o Note that we use partial derivatives () rather than total derivatives (d) here, since y is a function of more 

than one variable. 
o A portion of the regression analysis results are shown below (image copied from Excel), with the most 

important cells highlighted: 
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Discussion: The fit is pretty good, implying that there is little scatter in the data, and the data fit well with the 
simple linear equation. We know this is a good fit by looking at the linear correlation coefficient 
(Multiple R), which is greater than 0.99, and the Standard Error, which is only 0.21 for y values ranging 
from about 4 to about 15. We can claim a successful curve fit. 

Comments: 
o In addition to random scatter in the data, there may also be cross-talk between some of the parameters. 

For example, y may have terms with products like x1x2, x2x3
2, etc., which are clearly nonlinear terms. 

Nevertheless, a multiple parameter linear regression analysis is often performed only locally, around the 
operating point, and the linear assumption is reasonably accurate, at least close to the operating point.  

o In addition, variables x1, x2, and x3 may not be totally independent of each other in a real experiment. 
o Regression analysis with multiple variables becomes quite useful to us later in the course when we 

discuss optimization techniques such as response surface methodology.  
 
Nonlinear and higher-order polynomial regression analysis  

 Not all data are linear, and a straight line fit may not be appropriate. A good example is thermocouple 
voltage versus temperature. The relationship is nearly linear, but not quite; that is in fact the very reason for 
the necessity of thermocouple tables.  

 For nonlinear data, some transformation tricks can be employed, using logarithms or other functions.  
 For some data, a good curve fit can be obtained using a polynomial fit of some appropriate order. The order 

of a polynomial is defined by m, the maximum exponent in the x data:  
o zeroth-order (m = 0) is just a constant: y b . 

o first-order (m = 1) is a constant plus a linear term: 1y b a x  . (A first-order polynomial fit is the same 
as a linear least-squares fit, as we have already learned how to do.)  

o second-order (m = 2) is a constant plus a linear term plus a quadratic term: 2
1 2y b a x a x   . (A 

second-order polynomial fit is often called a quadratic fit.)  

o third-order (m = 3) adds a cubic term: 2 3
1 2 3y b a x a x a x    . (A third-order polynomial fit is often 

called a cubic fit.)  

o mth-order (m > 0) adds terms following this pattern up to amxm: 2 3
1 2 3 ... m

my b a x a x a x a x      . 
 Excel can be manipulated to perform least-squares polynomial fits of any order m, since Excel can perform 

regression analysis on more than one independent variable simultaneously. The procedure is as follows:  
o To the right of the x column, add new columns for x2, x3, ... xm.  
o Perform a multiple variable regression analysis as previously, except choose all the data cells (x, x2, x3, ... 

xm) as the “Input X Range” in the Regression working window.  
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o Note that m is the order of the polynomial, which is also treated as the number of independent variables 
to be fit. Excel treats each of the m columns as a separate variable. The output of the regression analysis 
includes the y-intercept as previously (equal to our constant b), and also a least-squares coefficient for 
each of the columns, i.e., for each of the variables x, x2, x3, ... xm: 
 The coefficient for “X Variable 1” is a1, corresponding to the x variable.  
 The coefficient for “X Variable 2” is a2, corresponding to the x2 variable.  
 The coefficient for “X Variable 3” is a3, corresponding to the x3 variable.  
 ...  
 The coefficient for “X Variable m” is am, corresponding to the xm variable.  

o Finally, the fitted curve is constructed from the equation, i.e., 2 3
1 2 3 ... m

my b a x a x a x a x      . 
 

 Example: 
Given: x and y data pairs, as shown: 

 

  
 

 

To do: Plot the data as symbols (no line), perform a linear least-squares fit, and plot the data as a dashed line 
(no symbols), and perform a second-order polynomial least-squares fit, and plot the data as a solid line 
(no symbols). 

Solution: 
o We plot the data as symbols, as shown on the above plot.  
o We perform a standard linear regression analysis, and then generate the best-fit line by using the 

equation for the best-fit straight line, Y ax b  . For these data, a = 1.025 and b = 1.510. The result is 
plotted as the dashed black line in the figure – the agreement is not so good. The standard error is 0.1359. 

o We add a column labeled x2 between the x and y columns, and fill it in. 
o We perform a multiple variable regression analysis, using the x and x2 columns as our range of 

independent variables. We generate the best-fit quadratic (2nd-order) polynomial curve by using the 

equation 2
1 2y b a x a x   . For these data, b = 1.307, a1 = 2.382, and a2 = –1.358. The solid red line is 

plotted above for this equation – the agreement is much better. The standard error is 0.0316. 
Discussion: These data fit much better to a second-order polynomial than to a linear fit. We see this both “by 

eye”, and also by comparing the standard error, which decreases by a factor of more than four when we 
apply the quadratic (second-order) curve fit instead of the linear curve fit. 


