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Introduction  
• In spectral analysis, our goal is to determine the frequency content of a signal. 
• For analog signals, we use Fourier series, as discussed in a previous learning module. 
• For digital signals, we use discrete Fourier transforms, as discussed in this learning module. 

 

Fourier transform (FT) 
• The Fourier transform (FT) is a generalization of the Fourier series. 
• Instead of the sines and cosines in a Fourier series, the Fourier transform uses exponentials and complex 

numbers. Recall that cos sinie iθ θ θ= + ; thus, we are able to combine the sine and cosine components of the 
Fourier series into combined components of the Fourier transform. 

• Instead of the summations used in a Fourier series, the Fourier transform uses integrals.  

• For a signal or function f(t), the Fourier transform is defined as ( ) ( ) i tF f t e dtωω
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imaginary number, defined as the square root of −1, 1i = − , and ω is the range of angular frequencies 
associated with the signal – the frequency content of the signal.  

• When working with time and the signal f(t), we are working in the time domain, and the variables are real.  
• When working with angular frequency and the Fourier transform F(ω), we are working in the frequency 

domain, and F(ω) is complex.  
• The FT is an analog tool – it is used for analyzing the frequency content of continuous signals.  

 

Discrete Fourier transform (DFT) [also sometimes called the digital Fourier transform] 
• We define the discrete Fourier transform (DFT) – a Fourier transform for a discrete (digital) signal.  
• The DFT is a digital tool – it is used for analyzing the frequency content of discrete signals.  

• The discrete Fourier transform is defined as ( ) ( ) ( )( )
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Δ = Δ∑  for k = 0, 1, 2, ..., N − 1. 

• Note that summation has replaced integration since discrete rather than continuous data are being examined.  
• In the time domain, the relevant variables are:  
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o N = total number of discrete data points taken.  Data points used 
o T = total sampling time.  
o Δt = time between data points, /t T NΔ = .  
o fs = sampling frequency, 1/ /sf t N T= Δ = .  

• Note that integers n and k in the above definition of the DFT 
have values from 0 to N − 1, not from 1 to N.  

• For example, consider data sampled as in the plot to the right. 
Data are sampled discretely at a sampling frequency of 0.5 Hz. 
Starting at time t = 0, N = 4 
data points are taken. Here, T = 
8 s, Δt = T/N = (8 s)/4 = 2 s, 
and fs = 1/Δt = 0.5 Hz. The 
discrete data used to calculate 
the DFT are those at t = 0, 2, 4, 
and 6 seconds. The data point 
at n = N (at t = T = 8 s) is not 
used. 

• Rather, the last data point is 
assumed to be identical to the 
first data point. 

• Consider a periodic signal that 
repeats itself every 0.1 s, as 
plotted. 
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• In general, we do not know the period of the signal ahead of time, and the sampling may stop at a different 

phase in the signal than where sampling started; the last data point is then not identical to the first data point. 
• In the above example, we start sampling at t = 0, and stop sampling at T = 0.17 s – the phase at t = T differs 

from that at t = 0.  
• This is because, unlike Fourier series analysis, T in the discrete Fourier transform is not necessarily equal to 

the fundamental period of the original signal. 
• In most actual experimental measurements, the fundamental period of the signal is not even known; thus T is, 

in general, totally unrelated to anything inherent in the signal itself. In some experimental measurements, the 
signal to be examined by a Fourier transform is not even a purely periodic signal!  

• This phase discrepancy leads to some inaccuracies when using discrete Fourier transforms, as discussed 
later.  

• In the frequency domain, the relevant variables are defined as follows:  
o Δf = the frequency increment, also called the frequency resolution, of the DFT output, f T1/Δ = . 
o F(kΔf) = the discrete Fourier transform output, one complex value for each discrete frequency, that 

provides information about the relative contribution to the signal by each discrete frequency.  
• The frequency increment Δf of a DFT is analogous to the fundamental frequency of a Fourier series, in that 

the DFT provides information about the relative contribution of the harmonics of Δf, just as the Fourier 
series coefficients provide information about the relative contribution of the harmonics of the fundamental 
frequency.  
o For k = 1, F(1Δf) is the DFT at the first harmonic frequency Δf.  
o For k = 2, F(2Δf) is the DFT at the second harmonic frequency 2Δf.  
o For k = 3, F(3Δf) is the DFT at the third harmonic frequency 3Δf, and so on.  

• Note, however, that unlike a Fourier series, the frequency increment Δf, in general, has nothing to do with the 
frequency content or the fundamental frequency of the original signal! Why? Because, Δf is simply 1/T, 
where T is an arbitrary time period (the total sampling time), as discussed above. This leads to some inherent 
errors associated with discrete Fourier transforms that will become clearer when examples are shown later.  

• The Nyquist criterion is also important in DFT analysis. When sampling at frequency fs, we obtain reliable 
frequency information only for frequencies less than fs /2. (Here, reliable means without aliasing problems.)  

• In the DFT output, there are N output values, F(kΔf) for k = 0, 1, 2, ..., N - 1, at N discrete frequencies. 
• Since Δf = 1/T and fs = N/T, we can easily calculate at what value of k the frequency kΔf equals fs /2. Namely, 

( )
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• Therefore, we conclude that the maximum useful frequency fmax from a DFT output, also called the folding 

frequency ffolding, is max folding 2 2
sf Nf f f= = = Δ . 

• In other words, only half of the N available DFT output values are useful – for k from 0 to N/2, which 
corresponds to a frequency from 0 to fs /2. This is a direct result of the Nyquist criterion.  

 

Example  
• Suppose we sample a signal for T = 4 seconds, at a sampling rate of fs = 100 Hz.  

o How many data points are taken? Answer: N = Tfs = (4 s)(100 Hz) =  N = 400 data points .  
o How many useful DFT output values are obtained? Answer:  N/2 = 200 useful output values . Actually, 

the output contains amplitudes at both extremes: 0 Hz (DC) and ffolding, so the real answer is 201 values. 
o What is Δf ? Answer: Δf = 1/T = 1/(4 s) = 0.25 Hz.  Frequency resolution = 0.25 Hz . 
o What is the maximum frequency for which the DFT output is useful and reliable? Answer: fmax = fs /2 = 

(100 Hz)/2 = 50 Hz. Or, fmax = (N/2)Δf = (400/2)(0.25 Hz) = 50 Hz.  fmax = ffolding = 50 Hz . 
• The other half of the output values (f > ffolding) are thrown out or ignored. 

 

Fast Fourier transform (FFT)  
• The fast Fourier transform is simply a DFT that is fast to calculate on a computer.  
• All the rules and details about DFTs described above apply to FFTs as well.  
• For many FFTs (such as the one in Microsoft Excel), the computer algorithm restricts N to a power of 2, such 

as 64, 128, 256, and so on. However, some FFT algorithms do not have such a restriction. (For example, the 
FFTs used in LabVIEW and in MATLAB do not have this power of 2 restriction.)  
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• It is not the goal of this learning module to teach the details of how to efficiently calculate an FFT. Instead, 

the goal here is to teach you how to use and interpret FFTs, and how to set up the parameters so as to achieve 
adequate frequency resolution while minimizing problems such as leakage, which is discussed below.  

• The output F(kΔf) of an FFT subroutine is a series of complex numbers, one for each discretely sampled data 
point, representing each discrete frequency, only half of which are useful because of the Nyquist criterion.  

• Although output F(kΔf) is complex, it is the magnitude or amplitude of the complex number that is actually 
used to compare the relative importance of the various frequencies. 

• Recall that for some complex number z = x + iy, where x is the real part and y is the imaginary part, the 
magnitude of z is given by 2 2z x y= + . 

• Note that the magnitude of a complex number is called the modulus; in Microsoft Excel, the function to 

calculate the modulus of a complex number is IMABS. In other words, ( ) 2 2IMABS z z x y= = + . 
 

Frequency spectrum 
• A plot of the magnitude of the FFT output |F| versus frequency f is called the frequency spectrum. Some 

authors call this the amplitude spectrum since the dimensions and units of the vertical axis are the same as 
those of the amplitude of the original signal, after some modifications as discussed below. 

• In the typical case in which the input signal is a voltage, the units of the modified |F| are also voltage. 
• Over a given frequency range, the amplitude defined in this way indicates the relative importance of that 

frequency range to the signal. A frequency spectrum plot formed from an FFT is analogous to the 
harmonic amplitude plot formed from a Fourier series.  

 

Usefulness of the FFT 
• The fast Fourier transform (FFT) is extremely useful in analyzing unsteady measurements, because the 

frequency spectrum from an FFT provides information about the frequency content of the signal.  
• Examples come from nearly every area of engineering, such as vibrations, where we need to know the 

frequency content of the vibration; fluid flow, where we need to know the frequency content of the turbulent 
fluctuations; and acoustics, where we need to know the frequency content of a sound signal, to mention just a 
few. 

 

Spectrum analyzers  

Voltage 
signal in
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OnOff 

Controls

Spectrum• There are laboratory instruments called spectrum 
analyzers that are designed to calculate and 
display the frequency spectrum of a voltage 
signal, as illustrated in the drawing to the right. 

• Internally, an FFT is calculated.  
• In the lab that accompanies this learning module, 

you will generate a virtual spectrum analyzer 
using LabVIEW and MATLAB. 

 

FFT example – a pure sine wave 
• Consider first the FFT of a pure sine wave. Suppose the signal is a 10 Hz sine wave with a peak-to-peak 

amplitude of −1 to 1 volt, ( ) ( )( )sin 2 10 Hzf t tπ= . 
• The ideal Fourier transform would have a spike of magnitude 1 Volt at a frequency of exactly 10 Hz, since 

all of the energy in the signal is at 10 Hz, and no other frequency contains any energy. 
• Unfortunately, the actual frequency spectrum generated by an FFT of this signal will not be that clean, 

however, but depends on a number of factors, such as  
o sampling rate fs  
o number of data points sampled N  
o total time of data collection T, where T = N/fs  
o the windowing function used (to be explained in the next learning module)  

• Note: The frequency axis of the FFT goes from 0 to fs/2 (the folding frequency), and the output is at discrete 
frequencies with an interval determined by the frequency resolution Δf = 1/T.  

 

Calculating and plotting FFTs in Microsoft Excel 
• Most spreadsheets have a built in FFT function. In fact, all the frequency spectra shown here were generated 

and plotted using Microsoft Excel. 
• In Excel, an FFT is calculated and plotted using the following procedure:  
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o Create and fill a column representing t (time for each discrete data point), from t = 0 to T, with Δt  = 1/fs.  
o Fill a column representing the discrete signal f (t) itself (typically obtained experimentally by sampling 

data digitally) – one data point for each row (each time from t = 0 to T in the time column).  
o Click on Tools (Excel 2003) or the Data group (Excel 2007). Then Data Analysis-Fourier Analysis, and 

OK. Note: If the Data Analysis tool is not available in Excel, it must be added in by Tools-Add-Ins 
(Excel 2003) or the Office Button-Excel Options-Add Ins (Excel 2007), then install Analysis ToolPak. 

o For the Input Range, select the signal to be analyzed – the column of discrete signal data f (t). 
o For the Output Range, select the top cell of an empty column as the top of the output column. OK. The 

FFT output – a column of complex numbers – is written to the spreadsheet.  
o Since the output of the FFT is a column of complex numbers, convert each value to an amplitude by 

using Excel’s IMABS function. Calculate your amplitudes in another separate column.  
o Modify (correct) the amplitudes as follows (do this in yet another column): 

 Divide each amplitude by (N/2) so that the corrected amplitude corresponds directly to the amplitude 
of the signal, as will be illustrated later by example.  

 In addition, divide the first amplitude (at f = 0 Hz) by 2 so that this amplitude corresponds properly 
to the DC offset (average value) of the signal.  

o Note that only half of these amplitudes are useful for the frequency spectrum because of the Nyquist 
criterion. The second half of the column (everything beyond k = N/2) can be deleted or ignored. 

o Create and fill a column representing the discrete frequencies, starting at f = 0 (the DC offset) and 
incremented by Δf  up to the maximum useful frequency, ffolding = fs/2.  

o Finally, plot the values in the modified amplitude column as a function of discrete frequency. The result 
is the frequency spectrum. The horizontal axis should range from 0 to ffolding. 

• One caution when using Excel − when the input signal changes, the FFT output in Excel is not automatically 
updated when the time trace is updated. You must re-run the FFT macro every time the time trace changes.  

 

Leakage and Example FFTs in Microsoft Excel 
• To illustrate FFTs in Excel, consider a simple 10 Hz sine wave with amplitude = 1 V, as previously.  
• As a starting point, fs is chosen to be 200 data points per second, and N is chosen to be 256. In other words, 

the 10 Hz sine wave is sampled at 200 Hz for 1.28 seconds (T = N/fs = 256/(200 Hz) = 1.28 s). 
• Both the time trace (the signal in the time domain) and the frequency spectrum (the modified magnitude of 

the FFT output in the frequency domain) are shown below.  
• First we plot the time trace, showing the discretely sampled data: 

 
• Next, we plot the frequency spectrum for N = 256 and fs = 200. The frequency resolution for the spectrum is 

Δf = 1/T = 1/(1.28 s) = 0.781 Hz (to three significant digits): 

 

Frequency spectrum: 
N = 256, fs = 200 Hz 
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• The following points about the above plot are noted:  

o Although the frequency spectrum correctly shows a spike around 10 Hz, the spike is not infinitesimally 
narrow. In fact, it appears from the frequency spectrum that there is a significant component of the signal 
at frequencies near 10 Hz (specifically within about 5 Hz to either side of 10 Hz). 

o This unphysical error in the FFT is called leakage. Leakage appears when the discrete data acquisition 
does not stop at exactly the same phase in the sine wave as it started. In principle, if an infinite number of 
discrete data points are taken, leakage would not be a problem. However, any real data acquisition 
system performing FFTs uses a finite (rather than infinite) number of discrete data points, and there will 
always be some leakage.  

o The maximum amplitude of the FFT is not exactly 1 V (in fact it is less than 1 V), even though the 
amplitude of the original signal is exactly 1 V. This is another consequence of leakage − some of the 
energy at the signal frequency (10 Hz) is erroneously distributed among frequencies near 10 Hz, thereby 
reducing the calculated amplitude at 10 Hz.  

o The frequency range is from 0 to 100 Hz, half of the sampling frequency, as discussed above. This is a 
consequence of the Nyquist criterion. We ignore the other half of the data (100 to 200 Hz). 

• How can leakage be reduced? Will a higher sampling rate help? To find out, we repeat this example, but with 
a higher sampling rate.  

• The same number of data points (256) of this sine wave are now taken at 1000 Hz instead of 200 Hz. All 
other parameters remain the same. The time trace and frequency spectrum are shown below: 

 

 

Frequency spectrum: 
N = 256, fs = 1000 Hz 

• Some observations about the above time trace and frequency spectrum:  
o Higher sampling frequency has vastly improved the resolution of the sine wave; there are now 100 data 

points per wavelength instead of just 20 data points per wavelength in the previous case.  
o However, increasing the sampling frequency did not improve the frequency spectrum!  
o In fact, the output frequency spectrum has much poorer frequency resolution. This can be clearly 

predicted by the above equations. Namely, the frequency resolution for this case is Δf = 1/T = 1/(0.256 s) 
= 3.91 Hz (to three significant digits), whereas that of the previous case (fs = 200 Hz) is approximately 
0.781 Hz for the same number of data points, N = 256.  

o Furthermore, the peak amplitude of the frequency spectrum is now about 0.66, significantly smaller than 
the known signal amplitude of 1. This is due to leakage, which is worse in this case because of the poorer 
frequency resolution.  

o Even worse, the peak amplitude of the frequency spectrum occurs at a frequency of 11.72 Hz instead of 
the known 10 Hz. This is also a result of the poor frequency resolution.  
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o We conclude: The only thing gained by increasing the sampling frequency is the corresponding 

increase in the maximum frequency or folding frequency of the frequency spectrum.  
• For this example – a 10 Hz sine wave – a sampling rate of 1000 Hz is overkill. In fact, the original 200 Hz 

sampling rate is also higher than necessary. By the Nyquist criterion, since the maximum frequency in the 
signal is 10 Hz, the minimum required sampling rate to avoid aliasing is 20 Hz.  

• The same time signal is again sampled (N = 256 data points as before), but this time at a sampling frequency 
of only 25 Hz. The time trace and frequency spectrum are shown below: 

 

 

 

Frequency spectrum: 
N = 256, fs = 25 Hz 

• Some comments about the above time trace and frequency spectrum:  
o Lower sampling frequency has vastly degraded the resolution of the sine wave; there are now only 2.5 

data points per wavelength instead of 100 in the previous example.  
o This time, however, the frequency resolution is much better (0.0977 Hz). We have improved the 

frequency resolution at the expense of poorer time resolution. 
o While there is still some leakage, the leakage is significant within only about 1 Hz to the right or left of 

the peak near 10 Hz.  
o The maximum amplitude is about 0.75 V, and occurs at 9.96 Hz − much closer to the true frequency of 

10 Hz, due to the improved frequency resolution.  
o This illustrates a very significant, yet often unappreciated fact: Higher sampling rate is not always better!  

• Can we improve the FFT results any further? The answer is yes, but at the cost of more computing time – 
more data points. The previous case is repeated, except the number of data points is doubled to N = 512. 
Everything else remains the same – the sampling frequency is 25 Hz, and the same sine wave is sampled. 
The time trace and frequency spectrum are shown below: 
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Frequency spectrum: 
N = 512, fs = 25 Hz 

• Some comments:  
o Compared to the previous case, the time resolution has not changed – we still sample 2.5 data points per 

wavelength or period of the time signal, but we sample for T = N/fs = 512/(25 Hz) = 20.48 s, twice as 
long as the previous case, in which T = 10.24 s. 

o Compared to the previous case, the frequency resolution has improved by a factor of two because the 
number of discrete data points has increased by a factor of two (for the same sampling frequency).  

o The peak in the spectrum at 10 Hz is much narrower, with greatly reduced leakage. 
o The peak amplitude is now 0.934 V at a frequency of 10.01 Hz. This is much closer to the known exact 

amplitude of 1 V at 10 Hz. The improvement is due to better frequency resolution and reduced leakage.  
 

Perfect FFT 
• A final comment needs to be made about FFTs and frequency spectra. Namely, it is theoretically possible to 

obtain a perfect FFT (one without any leakage) from sampled data.  
• However, a perfect FFT is possible only if the sampled data begin and end at the same phase of the signal.  
• To illustrate, the above case is repeated one more time, but with a sampling frequency of exactly 25.6 Hz.  
• This sampling frequency is chosen such that there is an integral number of wavelengths in the sampled data 

set, so that the sampled signal starts and ends at exactly the same phase. In this particular case, fs = 25.6, N = 
512, T = N/fs = exactly 20 s. This T corresponds to exactly 200 complete cycles for our 10 Hz sine wave. 

• The sampled signal starts and ends at the same (zero) phase. 
• The resulting frequency spectrum is shown below: 

 

“Perfect” frequency spectrum: 
N = 512, fs = 25.6 Hz, and f = 10 Hz 

In this case, there is no leakage. 

• Some comments:  
o The peak amplitude is exactly 1 V, and occurs at exactly 10 Hz.  
o The FFT is perfectly correct because there is no leakage in this case – the FFT output is exactly zero at 

all frequency values except 10 Hz, where its value is −256i. The magnitude at this point is 256, and when 
we divide by N/2 = 512/2 = 256, we get a modified amplitude of exactly 1 V – the FFT is perfect. 

o You must keep in mind that this “perfect FFT” is possible only because we know the frequency of the 
original signal, which is a perfect sine wave, and we select the sampling frequency appropriately. 

o In real-life laboratory situations, the frequency is not known in advance (otherwise, an FFT would not 
even be necessary!), and the signal is not a perfect sine wave.  

o In conclusion, although a perfect FFT is possible, it will never be encountered in actual laboratory 
situations.  

• This leads us into the next topic, windowing, which is discussed in a separate learning module.  


