
 
 
 
 
8.4 Equations of Particle Motion 
 To design particle collection devices and to predict their performance, engineers must be able to 
predict the trajectories of particles passing through the devices. The objective of this section is to establish 
equations that predict the trajectories of particles. As an aerosol particle moves through air, it disturbs the 
air, changing the velocity and pressure fields of the air flow. In addition, particles collide with each other 
and are influenced by each others’ wakes. Exact analysis of particles moving in air is therefore nearly 
impossible, even for simple air flows, since the equations for the air flow and for each particle’s trajectory 
are coupled. Fortunately, some simplifications are possible, which make the problem more tractable. Two 
major assumptions are made here: 
 

1. Particles move independently of each other. 
2. Particles do not influence the flow field of the carrier gas. 

 
 The first assumption is valid if two conditions are met: (a) particle collisions are infrequent and 
inconsequential, and (b) particles are not significantly affected when they pass through each others’ wakes. 
A useful rule of thumb that quantifies these conditions for a monodisperse aerosol is that the average 
distance between particles is at least 10 times the particle diameter. Assuming that 8 particles are located at 
the corners of a cube of dimension L, one finds that L/Dp > 10 when 
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where c is the mass concentration of particles, ρp is the particle density, and cnumber = nt/V is the particle 
number concentration, defined as the total number of particles per unit volume of gas. Table 8.3 
illustrates these upper limits and indicates that the particle number concentration has to be exceedingly 
large for the particles to influence each other. For water droplets (ρp = 1,000 kg/m3), application of Eq. (8-
51) leads to a particle mass concentration c = 4.2 kg/m3, corresponding to the upper limit of 1,000 in Eq. 
(8-51). For most problems in indoor air pollution, particle concentrations of water and particulate 
pollutants are hundreds of times smaller than 4.2 kg/m3. Consequently the first assumption above is clearly 
valid, and one can calculate the trajectory of one individual particle at a time. 
 
 The second assumption is more difficult to quantify. Large objects moving through air generate 
air flows due to displacement effects and the effects of aerodynamic wakes. For example, a pedestrian 
walking along the side of a road feels the “wind” created by a passing vehicle. The same effect can be 
experienced when a person walks past another person in otherwise quiescent air. Automobiles and people, 
however, are very large objects; particles usually associated with indoor air pollution are many orders of 
magnitude smaller. As shown below, most particles of interest to indoor  
 

 
Table 8.3 Particle number concentrations beyond which particles influence each other. 
 

Dp (μm) cnumber (particles/m3) 
1 8 x 1015 

10 8 x 1012 
100 8 x 109 
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air pollution move at extremely small speeds relative to the surrounding air, and therefore do not 
significantly alter the air flow field. The second assumption is critical to the analysis that follows. The 
approach is to first solve for the flow field of the carrier gas independently of the particles, and then to 
compute the particle trajectories through this “frozen” carrier gas flow field. Mathematically, the 
assumption is equivalent to an uncoupling of the equations. 
 
 The flow field of the carrier gas can be expressed analytically if one is so fortunate as to have a 
system of simple geometry, or it may be established experimentally and the data stored numerically. If an 
analytical expression for the velocity field exists, one can compute the particle trajectories explicitly. For 
most industrial applications only experimentally measured velocity data are available and a computer is 
needed to compute the particle trajectories.  
 
 An equation of motion for a particle can be derived from Newton’s second law. Namely, particle 
mass times acceleration of the particle is equal to the vector sum of all the forces acting on the particle. 
Only two forces are considered here – gravitational force (net weight) and aerodynamic drag. Newton’s 
second law is therefore 
 

 particle gravity dragm a F F F= = +∑  (8-52) 
 

Other forces, such as magnetic forces, etc., are ignored here. 
 
8.4.1 Gravitational Force 
 The net gravitational force is equal to the weight of the particle minus the buoyancy force on the 
particle, where the buoyancy force is equal to the weight of the air displaced by the particle. For a 
spherical particle, 
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where  is the acceleration of gravity, ρ is the density of the air, and ρp is the density of the particle. The 
density of a particle is typically of order 1,000 times greater than the density of air (ρp >> ρ). Thus the 
force of buoyancy on a particle is often neglected compared to its weight, 

g
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The approximation of Eq. (8-54) is not made in the material which follows, so that the equations are more 
general. 
 
8.4.2 Aerodynamic Drag 
 Consider a particle moving at some arbitrary velocity v  through air, at a location in which the air 
is moving at some other arbitrary velocity U  along a streamline of the air flow. As the particle moves 
relative to the air, as in Figure 8.10, the air produces an aerodynamic drag force on the particle. 
As indicated in the sketch, the aerodynamic drag force ( dragF ) acts in the direction of , i.e. in the 
direction opposite to the velocity of the particle relative to the air. The net force on the particle is the vector 
sum of the gravitational force and the drag force, as also sketched in Figure 8.10. The particle in Figure 
8.10 veers to the right and decelerates since the net force in this example is somewhat opposite to the 
particle’s direction and to the right. For a sphere of diameter Dp, 

rv−

dragF  can be written as 
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U  

U−  

air streamline 

 v rv v U= −  

 gravityF

 dragF  

 gravity dragF F F= +∑  

particle trajectory

 
Figure 8.10 Particle moving through air, which is also moving; U  is the air velocity and  is the 

particle velocity; gravitational force, drag force, and net force on the particle are shown. 
v

 
where 
 

- = carrier fluid (air) velocity U
- = particle velocity v
-  = relative velocity (particle velocity relative to the air), rv

 

 ( ) ( ) ( )r x x y y z z rx ry
ˆ ˆ ˆ ˆ ˆv v U i v U j v U k v U iv jv kv= − = − + − + − = + + rz

ˆ  (8-56) 

- rv v U= − = vr = magnitude of the relative velocity, also called the relative speed, 
 

 

 ( ) ( ) ( )22 2 2 2
x x y y z z rx ry rzv U v U v U v U v v v− = − + − + − = + + 2  (8-57) 

 

- cD = drag coefficient for a sphere, based on projected frontal area 
 

Figure 8.11 shows the drag coefficient for a sphere as a function of Reynolds number. Similar curves 
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Figure 8.11 Drag coefficient of a sphere versus Re (redrawn from Incropera and DeWitt, 1981). 
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exist for other geometric shapes. The drag coefficient includes both drag caused by an unsymmetrical 
pressure distribution (form drag) and drag caused by shear stresses acting on the sphere’s surface (viscous 
drag). The marked reduction in drag on a sphere at a Reynolds number around 200,000 is caused by 
transition from laminar to turbulent boundary layer flow separation (delayed flow separation) on the 
downstream side of the sphere; this sudden decrease in drag is sometimes called the drag crisis. It is 
common practice to divide the flow into five flow regimes, as labeled in Figure 8.11: 
 

- Stokes flow regime: Re < 10-1 cD ≈ 24/ Re  
- Transitional flow regime: 10-1 < Re < 103 cD = variable  
- Newtonian flow regime: 103 < Re < 105 cD ≈ 0.4  
- Transitionally turbulent flow regime: 105 < Re < 106 cD = variable 
- Fully turbulent flow regime: 106 < Re cD ≈ 0.2 

 

Reynolds number is defined in terms of the relative velocity and the particle diameter, 
 

 
p p r p r p rD v U D v D v D v

Re
ρ − ρ

= = = =
μ μ ν ν

 (8-58) 
 

where μ is the dynamic viscosity and ν = μ/ρ is the kinematic viscosity. The relationship between sphere 
drag coefficient and Reynolds number for Re < 105 can be expressed by the following empirical equation 
with an accuracy of around 10%: 
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If the Reynolds number is very small, the Stokes flow equation is adequate, and much simpler to employ: 
 

-  Re < 0.1: D
24c
Re

=  (8-60) 
 

If Re is larger than 0.1, but the range of Reynolds numbers in an application is narrow, the following 
empirical expressions are suggested by Willeke and Baron (1993): 
 

- 0.1 < Re < 5: (D
24c 1 0.0916Re
Re

= + )  (8-61) 
 

- 5 < Re < 1000: ( 2 / 3
D

24c 1 0.158Re
Re

= + )  (8-62) 
 

It must be emphasized that the speed used in the Reynolds number is based on the relative speed (vr) 
between the particle and the fluid, as defined by Eq. (8-56). For particles moving in motionless air, the 
relative velocity is the particle velocity. For particles traveling through a moving fluid, great care must be 
taken to evaluate the relative velocity. 
 
 Either the dynamic viscosity (μ) or the kinematic viscosity (ν) of the carrier gas must be known 
in order to calculate Re in Eq. (8-58). For most gases, μ is a strong function of temperature, but a very 
weak function of pressure. For air, the dynamic viscosity can be expressed empirically as a function of 
temperature (T), in units of kg/(m s). A well-known, highly accurate equation for μ as a function of T is 
Sutherland’s law, 
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where μ0 = 1.71 x 10-5 kg/(m s), T0 = 273.15 K, S = 110.4 K, and T must be in units of K. Other (less 
accurate) equations for μ can be obtained by performing a least-squares polynomial fit of experimental 
data; e.g. the following third-order polynomial fit (from Appendix A.11): 
 

 ( )6 7 11 2 14 3 kg1.3554 10 0.6738 10 T 3.808 10 T 1.183 10 T  
m s

− − − −μ = × + × − × + ×  (8-64) 
 

where T must again be in units of K. The kinematic viscosity (ν) can be calculated from either of these by 
definition, ν = μ/ρ. Shown in Figure 8.12 are μ and ν for air as functions of temperature at standard 
pressure. The values calculated by Eq. (8-64) overlap those calculated by Eq. (8-63) except at large values 
of T, where the polynomial curve fit deviates from Sutherland’s law. 
 
 Air consists of molecules that travel at very high speed. The average distance traveled by air 
molecules between collisions with each other is called the mean free path (λ). Mean free path can be 
expressed in terms of viscosity by the following equation (Jenning, 1988; Flagan and Seinfeld, 1988): 
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 (8-65) 
 

For air at STP, μSTP = 1.830 x 10-5 kg/(m s), ρSTP = 1.184 kg/m3, PSTP = 101,325 Pa, and λSTP = 0.06635 
μm. Assuming air to be a ideal gas (often called a perfect gas), 
 

 uRP T
M

= ρ = ρRT  (8-66) 
 

where Ru is the universal gas constant, and R is the specific gas constant, as defined in Chapter 1. The 
mean free path at temperatures and pressures other than STP can be expressed as 
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 (8-67) 
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Figure 8.12 Dynamic viscosity (μ) and kinematic viscosity (ν) of air as functions of temperature at 

standard atmospheric pressure; solid line from Eq. (8-63), dashed line from Eq. (8-64). 
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 A fluid is considered a continuum fluid if the moving particle is considerably larger than the 
mean free path of the fluid; the particle moves through the fluid as if the fluid were a continuous medium. 
On the other hand, if the particle is comparable in size (or smaller) than the mean free path, the particle is 
affected by collisions with individual molecules, and at times slips between molecules. Such motion is 
called free molecular flow or more generally, slip flow. 
  
 The parameter used to distinguish the continuum regime from the free molecular regime is the 
Knudsen number (Kn), defined as the ratio of the mean free path to a characteristic length of the particle. 
For spherical particles, 
 

 
p
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D
λ

=  (8-68) 
 

Three regimes can be classified according to the value of the Knudsen number as follows: 
 

- Kn < 0.1 continuum regime 
- 0.1 < Kn < 10 transitional flow regime 
- Kn > 10 free molecular flow regime 

 

Note that since particle diameter is in the denominator of Eq. (8-68), smaller particles have larger Knudsen 
numbers. Note also that the “transitional flow regime” defined here is not the same as the transitional flow 
regime defined previously for drag on a sphere. 
 
 Engineers are familiar with the equations of continuum fluid mechanics, but many contaminant 
particles, e.g. smoke, fume, or fine dust, are in the transitional or free molecular flow regimes. When 
dealing with these particles, one must modify Eq. (8-55). It is expedient and accurate to insert a parameter 
called the Cunningham slip factor (C), also called the Cunningham correction factor or simply the slip 
factor, into the denominator of the equation for aerodynamic drag. The slip factor can be expressed by the 
following (Jenning, 1988): 
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For spherical particles, Eq. (8-55) thus becomes 
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The relationship between the slip factor and the diameter of spherical particles in air at STP is shown in 
Table 8.4. 
 
Table 8.4 Knudsen number and Cunningham correction factor for spherical particles in air at STP. 
 

Dp (μm) Kn C  Dp (μm) Kn C 
0.001 66.37 220.5  0.5 0.1327 1.335 
0.002 33.19 110.5  1 0.0664 1.167 
0.005 13.27 44.56  2 0.0332 1.083 
0.01 6.637 22.57  5 0.0133 1.033 
0.02 3.319 11.59  10 0.0066 1.017 
0.05 1.327 5.039  20 0.0033 1.008 
0.1 0.6637 2.900  50 0.0013 1.003 
0.2 0.3319 1.885  100 0.0007 1.002 
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It is clear that for large particles, Dp >> λ, the slip factor (C) is essentially unity and can be omitted from 
Eq. (8-70). The slip factor is particularly significant for submicron particles. It should be noted that the slip 
factor is independent of particle velocity, but depends only on particle size and the physical properties of 
the fluid.  
 
8.4.3 Effect of Particle Shape on Aerodynamic Drag 
 Particles vary in geometry, e.g. perfect spheres such as condensed vapors, cylindrical or flat 
filaments such as cotton fibers or asbestos in which the ratio of length to width is large, platelets such as 
silica or mica, feathery agglomerates such as soot, and irregularly shaped fragments such as coal dust, 
foundry sand, or metal grinding particles. If particles are not spheres the drag may be quite different than 
for spheres of the same mass. To accommodate nonspherical particles, Fuchs (1964) suggested 
introducing a unitless dynamic shape factor (Χ, Greek letter chi), defined as the ratio of the drag force of 
the nonspherical particle and the drag force of a sphere having the same volume and velocity. Thus the 
drag force of Eq. Error! Reference source not found. is further modified for nonspherical particles as 
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where De,p is the equivalent volume diameter defined in terms of the actual particle volume (Vp) as 
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and the drag coefficient is expressed in terms of the Reynolds number based on this equivalent volume 
diameter. The Cunningham correction factor should also be computed on the basis of the equivalent 
volume diameter. The equivalent volume diameter is the diameter an actual particle would have if it were a 
sphere. For flow beyond the Stokes flow regime, one may use Eq. (8-71) to describe the drag in lieu of a 
better expression, but readers are urged to consult other sources (Fuchs, 1964; Davies, 1966; Strauss, 
1966; Hidy and Brock, 1970; Hinds, 1982; Cheng et al., 1988; Lee and Leith, 1989) for more details. 
Table 8.5 shows values of the dynamic shape factor (Χ) for a variety of common shapes. Dynamic shape 
factors for particles that have a length, width, and height of comparable value are close to unity, and may 
be omitted for purposes of indoor air pollution analysis. For these cases, De,p may be replaced by either the 
length, width, or height. Leith (1987) suggests that the dynamic shape factor (Χ) can be estimated as 
follows: 
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where Dp,p and Ds,p are called the equivalent projected area diameter and equivalent surface area 
diameter respectively, 
 

- Dp,p = diameter of a sphere with the same projected area as the actual particle, where projected 
area is the cross-sectional area of the particle normal to the direction of flow 

- Ds,p = diameter of a sphere with the same surface area as the actual particle 
 

Sauter mean diameter is defined as the total volume of all particles in an aerosol divided by the total 
surface area of all the particles. From this definition, Sauter diameter can be thought of as a mean volume-
to-surface diameter. 
 
 Spherical particles whose density is equal to 1000 kg/m3, the density of water, are called unit 
density spheres. Such particles have a specific gravity (SG) equal to 1.0, where SG is defined as the ratio 
of particle density (ρp) to water density (ρwater), 
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Table 8.5 Dynamic shape factors, averaged over all orientations unless otherwise noted (abstracted 

from Fuchs, 1964 and Strauss, 1966). 
 

shape Χ 
sphere  1.00 
cube  1.08 
cylinder (L/D = 4):  
 axis horizontal 1.32 
 axis vertical 1.07 
ellipsoid, across polar axis, with ratio of major to 
minor diameters = 4 1.20 

parallelepiped with square base, with various 
values of height to base:  

 0.25 1.15 
 0.50 1.07 
 2.00 1.16 
 3.00 1.22 
 4.00 1.31 
clusters of spheres  
 chain of 2 1.12 
 chain of 3 1.27 
 3 compact 1.15 
 chain of 4 1.32 
 4 compact 1.17 

 

 p

water

SG
ρ

=
ρ

 (8-74) 
 

For the most part, the density of a particle is the density of the compound of which it is composed. In the 
event the particle contains voids, is a loose feathery agglomerate, or is a composite material, the density is 
more difficult to define. Details of how to cope with these circumstances can be found in Hinds (1982).  
 
8.4.4 Predicting the Trajectory of a Spherical Particle 

For a spherical particle of diameter Dp, the net gravitational force is given by Eq. (8-54), and the drag 
force is given by Eq. (8-70). Substitution of these expressions into Eq. (8-52) yields the equation of 
motion of a single spherical particle in air,  
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 Consider the general motion of a spherical particle traveling in the x-y plane through a moving 
two- dimensional gas stream in which air velocity U  varies, and in which the gravity vector is in the 
negative y direction. Let the particle have initial velocity v(0) . Figure 8.10 depicts such motion. Equation 
(8-75) reduces to  
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where 
 



612 Chapter 8 
 
 ( ) ( ) ( )x x y y rx
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and 
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The above reduces to a pair of coupled differential equations, 
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and 
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where drag coefficient (cD) is a function of Reynolds number, as in Eqs. (8-59) through (8-62). The 
Reynolds number of Eq. (8-58) reduces to 
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8.4.5 Particle Trajectory in the Stokes Flow Regime 
If the particle’s motion is entirely within the Stokes flow regime, Eq. (8-60) applies; replacing cD by 24/Re 
decouples Eqs. (8-79) and (8-80), resulting in a simplified set of uncoupled equations, 
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and 
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where τp is called the particle relaxation time since it possesses the units of time, and because it is 
customary to use this name when it appears in first-order differential equations like Eq. (8-82) or (8-83). τp 
is defined as 
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Thus if Ux and Uy are constant or known functions of x and y, Eqs. (8-82) and (8-83) can be solved to 
predict vx and vy as functions of time and known initial conditions, vx(0) and vy(0). 
 
 To illustrate this kind of Stokes flow, consider the case in which a particle enters an air stream 
that is moving to the right at constant speed U. (The components of the air velocity are Ux = U and Uy = 
0.) The particle’s initial velocity components are vx(0) and vy(0), which are arbitrary. Shown in Figure 
8.13 is the particle at some arbitrary time, along with the forces acting on it. Equations (8-82) and (8-83) 
become simple first-order ordinary differential equations with constant coefficients. It is left as an exercise 
for the reader to rewrite these equations in standard form, i.e. in the form of Eq. (1-59), for which 
analytical solutions are possible. The solutions are 
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Figure 8.13 Particle moving through air, which is moving horizontally; forces on the particle and the 
particle trajectory are shown. 
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After some time, t >> τp, the transients can be neglected, and the particle maintains a steady-state velocity, 
, as also shown in Figure 8.13. Equations (8-85) and (8-86) reduce to ssv
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The net force on the particle in steady-state conditions is zero as shown in Figure 8.14. 
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Figure 8.14 Particle moving through air, which is moving horizontally; the forces acting on the particle 
and the particle trajectory are shown for steady-state conditions. 
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As shown, the aerodynamic drag force is vertical, exactly balancing the gravitational force. By Newton’s 
law, the particle experiences no further acceleration – it moves in a straight diagonal line at constant speed 
as sketched. This analysis justifies the commonplace assumption that small particles move horizontally at a 
speed equal to the carrier gas, and simultaneously drift downward relative to the gas at a speed equal to the 
terminal settling velocity (vt), sometimes simply called the terminal velocity or the fall velocity. In the case 
being examined here, 
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ρ
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One must keep in mind that this is true only for spherical particles in Stokes flow, and is only an 
approximation for other flow regimes. This behavior is often assumed as a general proposition, which may 
be adequate providing the accuracy requirements (or lack thereof) of the analysis allow it.  
  
 If the Reynolds numbers are unknown and one suspects that the flow is apt to be beyond the 
Stokes flow regime, differential equations (8-79) and (8-80) remain coupled and numerical methods are 
required to compute the particle velocity and trajectory. For brevity, only two-dimensional motion is 
described. To solve these equations numerically, they are first rewritten in standard form for first-order 
ordinary differential equations, 
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where, since vrx = vx – Ux and vry = vy – Uy, 
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and 
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In the general case, air velocity components (Ux and Uy) change with location (x and y) as the particle 
moves. Thus, two additional equations need to be solved to predict the trajectory, namely 
 

 x
dx dyv      and     v
dt dt

= y =  (8-93) 
 

Four coupled ordinary differential equations, Eqs. (8-89) and Eqs. (8-93), must be solved simultaneously. 
This is accomplished by numerical means; the Runge-Kutta method (Appendix A.12) is recommended.  
 
Example 8.5 - Trajectory of Particles in a Boundary Layer  
Given: In a production line, a high-speed press punches holes in a strip of metal ribbon that is formed into 
electrical connectors for the automotive industry. The speed of the operation requires the metal to be 
bathed in cutting oil (ρ = 891. kg/m3) to cool and lubricate the punch. Insufficient local ventilation is 
provided and drops of cutting oil are ejected upward into the air with an initial velocity of around 30. m/s 
at an angle approximately 150o from the positive x-axis. The injection point is x = 0.0, y = 1.0 cm. The 
range of particle diameters is estimated to be 50 μm < Dp < 200 μm. Room air passes over the horizontal 
surface as a boundary layer in the positive x-direction with horizontal velocity component approximated 
by 
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 x
yU U sin∞

⎛ ⎞= ⎜ ⎟δ⎝ ⎠
 

 

where U∞ = 5.0 m/s and δ is the boundary layer thickness, which is equal to 10. cm. Above the boundary 
layer thickness (y > δ), Ux = U∞ = constant. The air has negligible vertical velocity component. The 
workers claim that the large drops are carried far downwind while small particles are not. The plant 
engineer claims that that they are wrong – the large particles should settle close to where they are injected 
because of their weight, and no particles will be transported beyond about one meter from the point of 
injection. 
 
To do: Use a numerical technique to predict the velocity and trajectory of these oil particles traveling in 
the given air stream. 
 
Solution: The authors used Mathcad to perform Runge-Kutta marching. Trajectories for the two extreme 
particle diameters (Dp = 50 and 200 μm) are shown in Figure E8.5. The 50 μm particles settle at around 
0.74 m downstream of the injection site, while the 200 μm particles settle much further downstream, at 
about 1.8 m. 
 
Discussion: The results show that the workers are right and the plant engineer is wrong. Unlike 
trajectories in air moving uniformly in the x-direction, the calculations show that large particles travel the 
farthest. The reason for this behavior is that large particles possess more inertia, and rise to greater values 
of y before their upward motion is damped by aerodynamic drag and gravity. At these large values of y, 
the larger particles encounter higher air velocities that sweep them farther downwind than the smaller 
particles. As seen in Figure E8.5, the 50 μm particles never rise above the boundary layer, which is 0.10 m 
high. 
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