Today, we will:

- Continue to discuss the ideal gas law: specific heats, ratio of specific heats
- Do an example problem - ideal gas
- Discuss entropy and the Gds equations
- Discuss isentropic relations for an ideal gas, and do an example problem on Mb p:

$$
\begin{aligned}
& \text { JOHN DOE } \\
& \text { "JOHNNY" } \\
& \text { abcli234 }
\end{aligned}
$$

MORE THERMS REVIEW:

- Specific Heats

-IDEA GAS $\begin{aligned} C_{p} & =\text { constrat } \\ C_{v} & =1\end{aligned} \quad \begin{aligned} & u=C_{v} T \\ & h=C_{p} T\end{aligned} \quad C_{p}-C_{v}=R$
- Ratio of specific hest $=\gamma=\frac{c_{p}}{c_{v}} \quad\{\gamma\}=\{1\}$
- $E_{g} \sqrt{A_{1} R} \quad C_{p}-C_{v}=R$

Similarly,

$$
\begin{aligned}
& C_{p}-C_{v}=R \\
& \frac{C_{p}}{C_{v}}-1=\frac{R}{C_{v}} \Rightarrow C_{v}=\frac{R}{\gamma-1} \\
& C_{p}=\frac{R \gamma}{\gamma-1} \quad \begin{array}{l}
R=0.2870 \frac{\mathrm{~kJ}}{\mathrm{~kg} k} \\
C_{p}=1.0045 \frac{\mathrm{~kJ}}{\mathrm{k}_{y} \cdot k} \\
C_{v}=0.7175 \\
\mathrm{kgj}
\end{array}
\end{aligned}
$$

Example: Ideal gas properties and calculations
Given: A sample gas (not air) is in a pressurized container. The gas is assumed to behave as an ideal gas. The following properties are measured:

- $P=208.4 \mathrm{kPa}$
- $T=43.7^{\circ} \mathrm{C} \longrightarrow=(43.7+273.15) \mathrm{K}$
- $\rho=1.436 \mathrm{~kg} / \mathrm{m}^{3}$
- $c_{v}=1.238 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$
(a) To do: Calculate R, c_{P}, and γ for this gas. Give R in units of $\mathrm{J} /(\mathrm{kg} \mathrm{K})$.

Solution:
Assumptions and Approximations: $A!A$

1. The gas is an ideal gas.

To be completed in class.

$$
\begin{aligned}
& \text { - } P=\rho R T \rightarrow \\
& \text { facts (=1) } \\
& R=\frac{P}{\rho T}=\frac{208.4 \mathrm{kPa}}{\left(1.436 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)(43.7+273.5) k}\left(\frac{\mathrm{kN}}{\mathrm{~m}^{2} \cdot \mathrm{k} \rho_{6}}\right)\left(\frac{J}{\mathrm{~N} \cdot \mathrm{~m}}\right)\left(\frac{1000 \mathrm{~N}}{\mathrm{kN}}\right) \\
& R=458.0254 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{k}} \quad R=458.0 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{k}} \\
& \begin{aligned}
C_{p}-C_{v} & =R \\
C_{p} & =1696.025 \frac{J}{V_{p}}=R+C_{v}=458.0254 \frac{\mathrm{~J}}{\mathrm{k} \cdot \mathrm{k}}+1.238 \frac{\mathrm{~kJ}}{\mathrm{k}_{g} k}\left(\frac{1000 J}{\mathrm{kJJ}}\right)
\end{aligned} \\
& C_{p}=1696.025 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{k}} \quad C_{p}=1696, \frac{\mathrm{~J}}{\mathrm{ky} \cdot \mathrm{k}} \quad \mathrm{k} \quad \mathrm{~kg}^{\mathrm{k} k} \quad \mathrm{~kJ} \\
& \gamma=\frac{C_{p}}{C_{v}}=1.36997 \\
& \gamma=1.370 \\
& \text {.Vent: } \quad C_{v}=\frac{R}{\gamma-1} ? \quad C_{v}=\frac{458.0754 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{k}}}{1.36997-1}=1238.0 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}(\mathrm{~J})
\end{aligned}
$$

(b) Calc M

Solin:

Entropy: THE TAS EQUATIONS
Recall, foum themo, For any gas (not juyt ides gas)

$$
\$\left[\begin{array}{l}
T d s=d u+P d v \\
T d s=d h-v d v \tag{2}
\end{array}\right.
$$

$S=$ spertio entirps

For an idel gas
$(1) \rightarrow$

$$
\begin{aligned}
& T d s=d_{u}+P^{T} d v \\
& d s=c_{v} \frac{d T}{T}+\frac{R X}{v} \frac{1}{x^{\prime}} d v \\
& d s=c_{v} \frac{d T}{T}+R \frac{d v}{v}
\end{aligned}
$$

integnte from (1) to (2)

Similarly, (2) \rightarrow

$$
\begin{equation*}
S_{2}-S_{1}=C_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} \tag{2i}
\end{equation*}
$$

* Isfantropil relations for an ideal gas neglybibe irreversibilities

$$
S_{2}-S_{1}=0 \quad \rightarrow \quad 0=C_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}
$$

JAOrt $w /(2 i)$

$$
\left.\frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}}\right)^{\left\{\begin{array}{l}
\text { Isentropic flow } \\
\text { oF an ideal gas }
\end{array}\right.}
$$

Similarly start with (ii)

$$
\begin{aligned}
& 0=C_{v} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{\rho_{1}}{\rho_{2}} \\
& \ln \frac{\rho_{2}}{\rho_{1}}=-\ln \frac{\rho_{1}}{\rho_{2}}=\frac{C_{v}}{R} \ln \frac{T_{2}}{T_{1}}=\ln \left[\frac{T_{2}}{T_{1}}\right)^{\left.\frac{C_{v}}{R}\right]} \\
& e^{()} \text {both sides } \\
& \quad \frac{\rho_{2}}{\rho_{1}}=\left(\frac{T_{2}}{T_{1}}\right) \frac{C_{v}}{R}=\frac{1}{\gamma-1} \\
& \text { Isentropic flow of an ideal gas } \Longrightarrow \frac{\rho_{2}}{\rho_{1}}=\left(\frac{T_{2}}{T_{1}} \frac{1}{\gamma-1}\right)
\end{aligned}
$$

Example: Isentropic expansion
Given: Air is very carefully and slowly expanded isentropically from state 1 to state 2 . The following are measured:

- $P_{1}=289.3 \mathrm{kPa}$
- $T_{1}=69.7^{\circ} \mathrm{C}$
- $T_{2}=33.2^{\circ} \mathrm{C}$

To do: Calculate P_{2}.

or

Solution:

$$
\ln K P_{n}
$$

Assumptions and Approximations:

1. The air is an ideal gas.
2. The process is isentropic.

To be completed in class.

$$
\frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}} \Rightarrow P_{2}=P_{1}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}}
$$

$$
\begin{gathered}
P_{\text {lay in Hf }} \rightarrow \\
P_{2}=(289.3 \mathrm{kPa})\left(\frac{(33.2+273.15) k}{(69.7+273.15) k}\right)^{\frac{1.40}{1.40-1}} \\
P_{2}=195.095 \quad \mathrm{kPa} \quad P_{2}=195.1 \mathrm{kPa}
\end{gathered}
$$

