

More general CV
W produce not in =
$$-\int p(\vec{V} \cdot \vec{n}) \partial A = -\int \frac{P}{P} p(\vec{V} \cdot \vec{n}) \Delta A$$
 (4)
Plug (4) who (3)
AiA AD INBATIC $-\vec{Q} = 0$, STEADY
 $-\int \frac{P}{P} p(\vec{V} \cdot \vec{n}) \Delta A = \int e p(\vec{V} \cdot \vec{n}) \Delta A$
br
 $\int (e^{+} \frac{P}{P}) p(\vec{V} \cdot \vec{n}) \Delta A = \int e p(\vec{V} \cdot \vec{n}) \Delta A$
 $\int (u^{+} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (u^{+} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (u^{+} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (u^{+} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (h^{+} \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (h^{+} \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (h^{+} \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (h^{+} \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$
 $\int (e^{-} \frac{P}{P} + \frac{V^{2}}{2}) p(\vec{V} \cdot \vec{n}) \Delta A = 0$

h. = specific enthalpy of a fruit brought to rest adiabatically $h_0 = h_{02}$) Study, adubetic one-D duct four 1 = inlet z = outlet of our CV This eq. applies even if the flow is non-ventropic Can have ineverily they CA, friction, Shock waves

Example: Steady adiabatic duct flow

<u>Given</u>: Air flows steadily in an expanding duct. The duct is insulated. We measure:

- $V_1 = 453.1 \text{ m/s}$
- $T_1 = 389.2 \text{ K}$
- $T_2 = 279.4 \text{ K}$

<u>To do</u>:

- (a) Calculate V_2 .
- (**b**) Calculate M_1 and M_2 . Is this flow subsonic or supersonic?

Solution:

To be completed in class.

Assumptions and Approximations:

 V_1

 $\frac{V_2}{T_2}$

Since
$$V_{2} > V_{1}$$
, $P_{2} < P_{1}$ to conjunc Mill
 $in = PVA = cost$
 $V_{11} = V_{11}$
 $M_{1} = \frac{V_{1}}{a_{1}} = \frac{V_{1}}{\nabla RT} = 1.1458$ $M_{1} > 1$ Supermic
 $M_{2} = \frac{V_{2}}{a_{2}} = \frac{M_{2}}{\nabla RT} = 1.948$ supermic
 $M_{2} = \frac{V_{2}}{a_{2}} = \frac{M_{2}}{R} = 1.948$ supermic
 $M_{1} = V T$ as $A T$ in supermic but from
 T SCATROPIC, ADIABATIC DUCT FLOW
 F_{2} . $h_{0,1} = h_{0,2} \Rightarrow h + \frac{V^{2}}{2} = constant$
 $differential: $dh + \frac{2VJV}{2} = 0$
 $Jh = -VJV$ (1)
Altern as ventropic $Jdr = 0$
 $\Gamma continue Tas = dh - \frac{1}{2} dP \Rightarrow dh = \frac{dP}{P}$ (2)
 $equarte (1) i. (2) \rightarrow -VJV = \frac{dP}{P}$ (3)$

NOW use
$$E_{R}(3)$$
 again, $\frac{JP}{P} = -V dV$
 $\frac{dA}{A} = -\frac{V dV}{V^{2}} (I - M^{2})$
 $= \frac{dV}{V} (I - M^{2})$
rearrange:
 $\frac{dV}{V} = \frac{1}{M^{2} - 1} \frac{JA}{A}$
 $\frac{dV}{A} \frac{dV}{V} = \frac{1}{M^{2} - 1} \frac{JA}{A}$
 $\frac{dV}{A} \frac{dV}{V} = \frac{1}{M^{2} - 1} \frac{JA}{A}$