

Revell Weathops relations
$$\frac{P_{z}}{P_{i}} = \left(\frac{T_{z}}{T_{i}}\right)^{\frac{N}{N-1}}$$

$$\frac{P_{z}}{P_{i}} = \left(\frac{T_{z}}{T_{i}}\right)^{\frac{N}{N-1}}$$

$$\frac{P_{i}}{P_{i}} = \left(\frac{T_{i}}{T_{i}}\right)^{\frac{N}{N-1}} + \left(\frac{2}{2}\right)$$

$$\frac{P_{i}}{P_{i}} = \left(1 + \frac{N_{i}}{2}M^{2}\right)^{\frac{N}{N-1}} + \left(\frac{2}{N}\right)^{\frac{N}{N-1}}$$

$$\frac{P_{i}}{P_{i}} = \left(1 + \frac{N_{i}}{2}M^{2}\right)^{\frac{N}{N-1}} + \left(\frac{1}{N}\right)^{\frac{N}{N-1}} + \left$$

(a) This flow is subsonic
(b) Cole Me : Te
Set
$$Pe = P_{b}$$
 since then
 I' Subsonic e exit
 $\frac{P_{o}}{Pe} = (1 + \frac{(r+1)}{2} M_{e}^{2})^{-1} \rightarrow solve for Me$
 $\frac{V}{12} = 1 + 0.2 M_{e}^{2}$
 $Te = \frac{Te}{Te} To = (1 + 0.2 M_{e}^{2}) (523 K)$
 $Te = \frac{Te}{To} Te} = (1 + 0.2 M_{e}^{2}) (523 K)$
 $Te = \frac{Te}{To} Te} = (1 + 0.2 M_{e}^{2}) (523 K)$
 $Te = \frac{Te}{To} Te} = (1 + 0.2 M_{e}^{2}) (523 K)$
 $Te = 458. K$ AT
Comments: $Te < To$
 $(air gets colder)$
 $To = 247C$ P_{b} would need to be lower to make this
 $Te = 183^{\circ}C$
 $(much colder!)$
 $Me = 0.823 \rightarrow clue hat not sonic
 Tf charge area e exit. Me would not charge
 $(only the May thow rate would charge)$$