ME 420

Lecture 09

Today, we will:

- Generate the *area ratio vs. Mach number relationship* for steady, adiabatic, isentropic one-dimensional duct flow of an ideal gas
- Show various ways to solve the resulting *implicit equation*
- Start an example problem converging duct, calculate M and P at various x locations

The area ratio vs. Mach number relationship (for steady, adiabatic, isentropic onedimensional duct flow of an ideal gas):

Consider again our converging nozzle flow:
From the previous lecture (also see equation sheet),
we had:
General case:
$$\dot{m} = P_0 AM \sqrt{\frac{\gamma}{RT_0}} (1 + \frac{\gamma - 1}{2}M^2)^{\frac{\gamma}{2(\gamma + 1)}} (4)$$

Choked case: $\dot{m} = \dot{m}_{max} = P_0 A' \sqrt{\frac{\gamma}{RT_0}} (\frac{\gamma + 1}{2})^{\frac{\gamma}{2(\gamma + 1)}} (5)$
Choked case: $\dot{m} = \dot{m}_{max} = P_0 A' \sqrt{\frac{\gamma}{RT_0}} (\frac{\gamma + 1}{2})^{\frac{\gamma}{2(\gamma + 1)}} (5)$
Choked case: $\dot{m} = \dot{m}_{max} = P_0 A' \sqrt{\frac{\gamma}{RT_0}} (\frac{\gamma + 1}{2})^{\frac{\gamma}{2(\gamma + 1)}} (5)$
 $A_e = \text{exit area}$
Choked case: $\dot{m} = \dot{m}_{max} = P_0 A' \sqrt{\frac{\gamma}{RT_0}} (\frac{\gamma + 1}{2})^{\frac{\gamma}{2(\gamma + 1)}} (5)$
 $A_{e} = \text{back}$
 $pressure
 $P = P_0$
 $h = h_0$
 $A_{e} = \text{exit area}$
 $P_{b} = \text{back}$
 $pressure
 $P_{b} = \text{back}$
 $P_{b} = \text{back}$
 $pressure
 $P_{b} = \text{back}$
 $pressure
 $P_{b} = \text{back}$
 $P_{b$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Side Notes: How to solve an implicit equation

Example: how to solve for Mach number M at a given value of A/A^* ?

<u>Given</u>: The area ratio vs. Mach number relation for steady, adiabatic, isentropic, one-D duct flow of an ideal gas:

$$\frac{A}{A^*} = \frac{1}{M} \left[\left(\frac{2}{\gamma+1} \right) \left(1 + \frac{\gamma-1}{2} M^2 \right) \right]^{\frac{\gamma+1}{2(\gamma-1)}} \bigstar \qquad (1)$$

This equation is *explicit* if \overline{M} is known and we are solving for area ratio. But the equation is *implicit* if we want to solve for M at a given value of area ratio.

<u>To do</u>: Discuss various ways to solve for Mach number M at a given value of A/A^* .

<u>Solution</u>: To be completed in class.

A

A	B	С	D	E	F	G	H		J	K	L	M	N
sentropic Mach nun	bers in a n	ozzle using	the area ra	tio-Mach nu	mber equatio	on, calculat	ed various	s ways, incl	uding the F	alse Posit	ion Metho	d, What-IF /	Analysis
J. M. Cimbala													
Conctante:													
Jonstants.	~ -	1 /		ratio of coor	ific boate								
	/-	0.000000	- 2	threat area	inc nears								
	A* -	0.000223	2	throat area									
	A =	0.0093345	m	duct area									
	exponent =	3		exponent for	A/A^ vs Mac	n number e	equation						
See 1													
Joal seek method:	<u> </u>		0.17										
	Goal =	1.5	Goal for are	a ratio - need	to find the M	that gives t	his value.						
	0.430367	1.499/111	Data - What	t if Analysis -	Goal Seek								
alse Position Metho	od ("smart t	rial and erro	or using into	erpolation"):									
	Subsonic				Supersonic								
	М	A/A ⁻			М	A/A [*]							
Guess:	0.3	2.0350653	first guess		2	1.6875	first guess						
Guess again:	0.7	1.0943727 second gue		SS	3	4.234568	second gu	ess					
Interpolate:	0.52752	1.2905775	From here of	on, interpolate	1.9263859	1.588552	From here	on, interpola	ate with the	previous tw	o values - c	onverges fa	irly rap
	0.34342	1.807197			1.8904562	1.543489							
	0.452891	1.4415918			1.8557821	1.50194							
	0.435402	1.4861101			1.8541627	1.500046							
	0.429946	1.5008666			1.8541236	1.5							
	0.430266	1.499988			1.8541235	1.5							
	0.430262	1.5			1.8541235	1.5							
	0.430262	1.5			1.8541235	1.5							
	0.430262	1.5			1.8541235	1.5							
	0.430262	1.5			1.8541235	1.5							
	0.430262	1.5			1.8541235	1.5							
	0.430262	1.5			1.8541235	1.5							
simple calculations f	o verify:												
	M	A/A [*]			M	A/A [*]							
Subsonic	0.430262	1.5		Supersonic	1.8541235	1.5							
lewton's Method:				Iteration sc	heme using l	Newton's r	nethod:						
	A/A*	Guess M	Final M	Final G=0?	G	G'	New M	G	G'	New M	G	G'	Nev
Subsonic	1.5	0.3	0.4302617	0	-0.5350653	6.063881	0.388238	-0.129499	3.46022	0.425663	-0.012755	2.80819	0.430
Supersonic	1.5	1.5	1.8541235	0	0.3238329	-0.675958	1.979073	-0.158445	-1.370566	1.863467	-0.010987	-1.183136	1.854

3) Excel = " WHAT IF HARHLUGG
4) False Position Method = " Smart Trich ? Error"

$$\frac{M}{A^{*}} \xrightarrow{A^{*}} from Eq. (1) \qquad A = 1.50 \quad U \quad my \quad gacl
Frugg 1 & 0.3 & 2.0351
Grugg 2 & 0.7 & 1.0944
" Smirt" guesg 3 & 0.52752 & 1.2966
Interpolate with the previous 2 values to get next guesg
$$D = 0.52732$$$$

Convergent to
$$M = 0.430262$$

5) Newton's method \rightarrow withine dometric (1. pc)
For function $G(M) \rightarrow Pick G such that $G(M) = 0$
when M is correct
Precident: Grey M
 $\cdot Grey M$
 $\cdot Gale G e this M$
 $\cdot Cale G'(M) (deriv.)$
 $\cdot New grey for M $M_{new} = M_{011} - \frac{G}{G'}$ W
 $\cdot Repeat unital G(MF = -1 this is the correct M$
Here, let $G(M) = \frac{A}{A'} - \frac{1}{M} \left(\left(\frac{2}{8} \right) \left(1 + \frac{r-1}{2} M^2 \right)^{\frac{2r+1}{2(2r+1)}} \right)$
 $G'(M) = 0 - \left(-\frac{1}{M^2} \right) \left(\frac{2r+1}{2(2r+1)} + \frac{1}{M} driv. of 0 for M
 $Frolows rule S
 $Grey M = 0.2 - Herete $M = 0.45026$
 $M = 1.5 - i$ $M = 0.85412$$$$$$

6) Computer pryrim, - MATLAB, EES 7) COMPREJ/IBLE FLOW CALCULATOR & - VSEFUL FOR VALIDATING YOUR \$ SEE LINK ON WEBSITE CALCULATIONS But I would not rely on it