ME 420 Professor John M. Cimbala Lecture 13

Today, we will:

. Complete the example problem from last lecture — Part (b)
. Begin a qualitative discussion of normal shocks

Continuation of the example from last lecture:

Example: Converging-Diverging nozzle
Given: Air flows from a very large
tank through a converging-diverging Outlet
nozzle. The test section begins at x =
0. The outlet of the test section is at
x = 0.60 m, where it is exposed to
back pressure P, = 50.0 kPa. In the
tank,

«  Poinet = 220 kPa (absolute)

e Tojnee =300 K &~
The cross-sectional area is known as
a function of axial distance x. (see previous lecture)

(a) To do: For isentropic flow through the converging-diverging nozzle (no shocks),
calculate and plot Mach number and nondimensional pressure P/Py iniet as functions of x.

Solution: We assumed that the back pressure is low enough such that the flow in the C-D
nozzle is isentropic everywhere (no shock). Numbers from last lecture:
We calculate Pp/Poiniet = 50/220 = 0.2273 — we assume this back pressure is low enough
that the flow is supersonic through the entire diverging section of the nozzle, without any
normal shocks in the nozzle. /s this assumption true?

For case E of our notes, a normal shock sits right at the exit plane of the CD nozzle. We
calculated that downstream of this shock, P, = 93.89 kPa. So, as long as the actual P is less
than this value of P,, we are assured that our assumption was indeed correct.

Here, P, = 50.0 kPa < P, = 93.89 kPa. Thus, we have verified our assumption.

(b) To do: Calculate the average air speed at the throat and at the exit plane. Also calculate
the mass flow rate through this CD nozzle.

Solution: To be completed in class.
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The skier pile-up analogy (similar to the traffic shock analogy):

with the local sound speed ¢ (c? = (3P/dp)y).

Photo from David Drewniak, from hitps://www.scribd.com/document/208788775/Shock-waves-vs-sounds-waves



https://nam01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.scribd.com%2Fdocument%2F208788775%2FShock-waves-vs-sounds-waves&data=02%7C01%7Cjmc6%40psu.edu%7Ca318f637743c476d4c7908d741dae044%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C637050280625565909&sdata=nGtiE25%2BtKXMviXIYRcqijjAdQ99m7i9oHVMNUjfemc%3D&reserved=0

The “dime analogy” (model a moving shock as rows of dimes that pile up when pushed

by a rod or “piston” as sketched; three sequential times):
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e The vertical red line is analogous to a shock wave: V1 =0, V> V>, ;» > pi (there is sudden
increase in density, and the “wave front” of dimes moves faster than the piston).

e The dimes in region 1 don’t “know” anything is happening until the shock hits them.

e Similarly in a shock wave in air, the air in region 1 does not “know” anything is happening

until the shock wave hits it.




