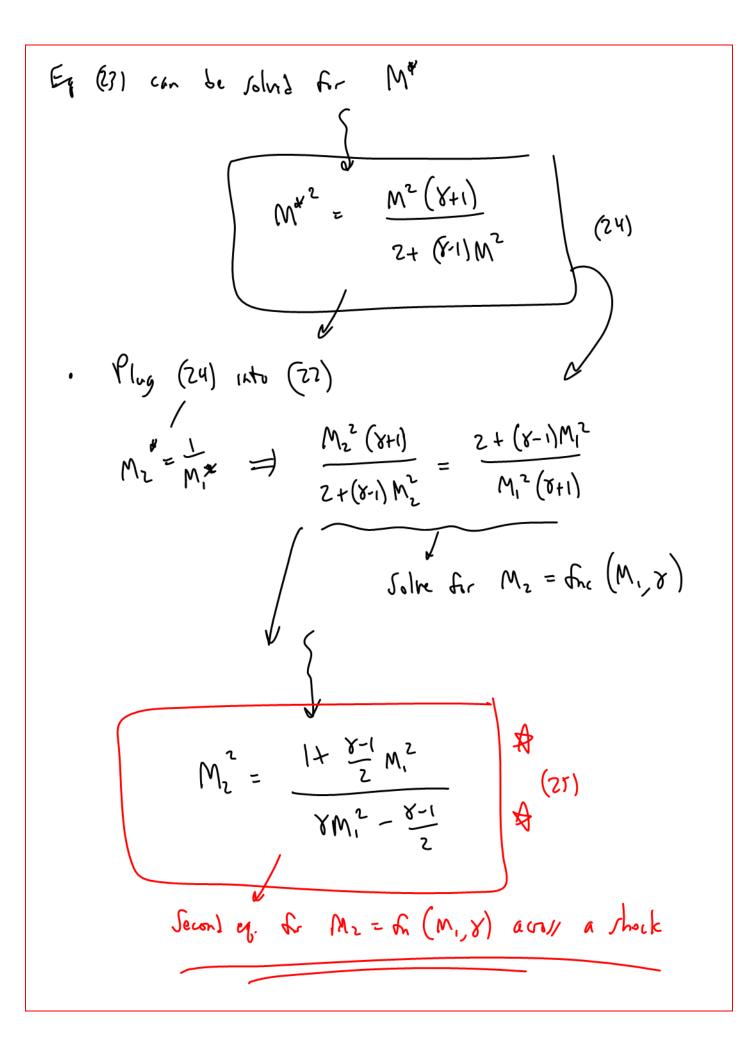

ME 420

Professor John M. Cimbala

Lecture 17

Today, we will:

- Do an alternate (more elegant) derivation of M_2 across a normal shock
- Introduce the Prandtl relation for flow across a normal shock
- Generate equations for how *other* properties (P, T, P₀, ρ, V, etc.) change across a normal shock (1 to 2)



Fedly
$$h_{1} + \frac{V_{1}^{2}}{2} = h_{2} + \frac{V_{2}^{2}}{2}$$
 (2)
 $h_{1} + \frac{V_{1}^{2}}{2} = h_{0} = Caryhat$
 $h_{1} + \frac{V_{1}^{2}}{2} = h_{0} = Caryhat$
 $h_{1} + \frac{V_{2}^{2}}{2} = h_{0} = Caryhat$
 $fine Edubetic
 $fine Edubetic$
 $fine Edubetic
 $fine fine fine fine Edubetic
 $fine Edubetic
 $fine Edubetic$
 $fine Edubetic
 $fine Edubetic$
 $fine Edubetic$
 $fine Edubetic$
 $fine Edubetic
 $fine Edubetic$
 $fine Edubetic$
 $fine Edubetic$
 $fine Edubetic
 $fine Edubetic$
 $fine Edubet$$

$$(if) \rightarrow \frac{a^{2}}{\gamma_{-1}} + \frac{V^{2}}{2} = \frac{a^{x^{2}}}{\gamma_{-1}} + \frac{a^{y^{2}}}{2}$$

$$(if) \rightarrow \frac{a^{2}}{\gamma_{-1}} + \frac{V^{2}}{2} = \frac{y_{+1}}{\gamma_{-1}} a^{y^{2}} + \frac{a^{y^{2}}}{2} + \frac{y_{-1}}{2} + \frac{y^{2}}{2} = \frac{y_{+1}}{2} a^{y^{2}} - \frac{y_{-1}}{2} + \frac{y^{2}}{2} + \frac{y_{-1}}{2} + \frac{y_{-1$$

get
$$A^{\mu^2} = V_1 V_2$$

 $A (2)$
 $Recall, M^{\mu} = \frac{V}{A^{\mu}} = characteristic Mindu #
 $A^{\mu} = \int XRT^{\mu}$
 $(21) \rightarrow A^{\mu}A^{\mu} = V_1 V_2$
 $I = \frac{V_1 V_2}{A^{\mu}A^{\mu}} = M_1^{\mu}M_2^{\mu} \rightarrow M_2^{\mu} = \frac{1}{M_1^{\mu}}$
 $Recall, provincy lecture \rightarrow M_2^2 = \frac{Z}{M_1^{\mu}} (22)$
 $Recall, provincy lecture \rightarrow M_2^2 = \frac{Z}{M_1^{\mu}} (23)$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^2 = I - M^{-1}$
 $If (M^{\mu} = 1) M^{-1}$
 $If (M^$$

$$M_{L} = \begin{bmatrix} 1 + \frac{y-1}{2} & M_{1}^{2} \\ \frac{y}{M_{1}^{2}} - \frac{y-1}{2} \end{bmatrix}$$

$$(21)$$

$$F_{3}, Same M_{1} a_{1} previously; we silved for M_{2}$$

$$for air (y=1.40) i M_{1} = 2.60$$

$$\cdot Webshe calculater - M_{2} = 0.563871$$

$$\cdot M_{3} guadate calculater - M_{2} = 0.563871$$

$$\cdot M_{3} guadate calculater - M_{2} = 0.503871$$

$$(2)$$

$$OTHER EQ_{2} Acrosy A NoRMAL Skock$$

$$M_{1} = \frac{1 + \frac{y}{2} M_{1}}{T_{1}} \qquad (1)$$

$$We M_{2} = \frac{1 + \frac{y}{2} M_{1}^{2}}{Y M_{1}^{2} - \frac{y-1}{2}} \qquad (1)$$

$$\frac{P_{1}}{P_{1}} = We \frac{R_{sylwyh}}{P_{1}} \text{ is } F_{inno}$$

$$\frac{P_{2}}{P_{1}} = \frac{1+\chi m_{1}^{2}}{1+\chi m_{2}^{2}}$$

$$\int algeba_{i} \quad comlare \quad (1) \quad \overline{i}(2)$$

$$\frac{P_{2}}{P_{1}} = \frac{2\chi m_{1}^{2} - \chi + 1}{\chi + 1}$$

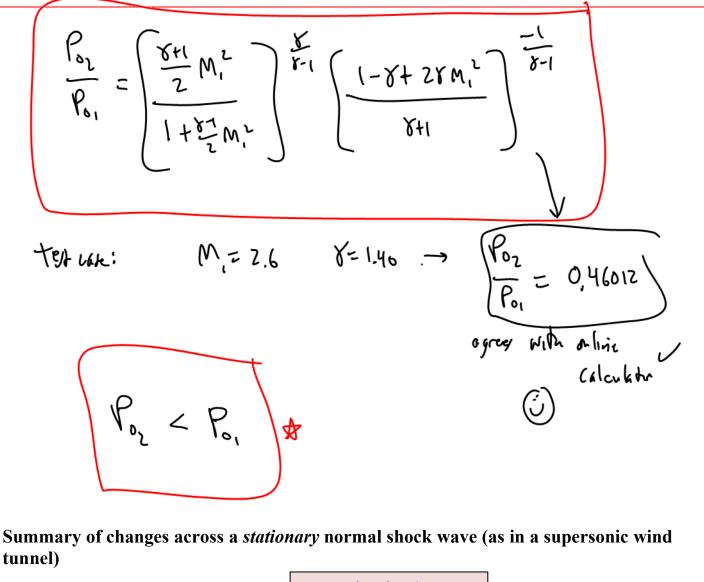
$$\frac{P_{2}}{P_{1}} = \frac{2\chi m_{1}^{2} - \chi + 1}{\chi + 1}$$

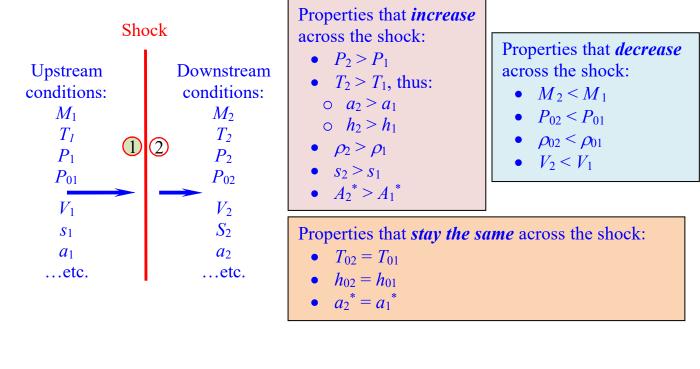
$$\frac{P_{2}}{P_{1}} = \frac{P_{2}}{RT_{2}} \frac{RT_{1}}{P_{1}} = \frac{P_{2}}{P_{1}} \left(\frac{T_{1}}{T_{1}}\right)$$

$$\frac{P_{2}}{T_{1}} = \frac{P_{2}}{RT_{2}} \frac{RT_{1}}{P_{1}} = \frac{P_{2}}{P_{1}} \left(\frac{T_{1}}{T_{1}}\right)$$

$$\frac{P_{2}}{T_{1}} = \frac{(\chi + 1)}{2} \frac{M_{1}^{2}}{M_{1}^{2}}$$

$$\frac{P_{2}}{P_{1}} = \frac{(\chi + 1)}{2 + (\chi + 1)} \frac{M_{2}}{M_{1}^{2}}$$


$$\frac{P_{2}}{T_{1}} = f_{n_{1}} \left(\frac{M_{1}}{M_{1}}\right)$$


$$\frac{P_{2}}{T_{1}} = f_{n_{2}} \left(\frac{M_{1}}{M_{1}}\right)$$

$$\frac{P_{2}}{T_{1}} = f_{n_{2}} \left(\frac{M_{1}}{M_{1}}\right)$$

$$\frac{P_{2}}{T_{1}} = f_{n_{2}} \left(\frac{M_{1}}{M_{1}}\right)$$

$$\frac{P_{2}}{T_{1}} = f_{n_{2}} \left(\frac{M_{1}}{M_{1}}\right)$$

Summary of Normal Shock Equations (1 = upstream, 2 = downstream of stationary shock):

Equations and table from Cengel & Cimbala.

Note the notation differences: C&C use k instead of γ and Ma instead of M.

$$\begin{split} T_{01} &= T_{02} \\ \mathrm{Ma}_{2} &= \sqrt{\frac{(k-1)\mathrm{Ma}_{1}^{2}+2}{2k\mathrm{Ma}_{1}^{2}-k+1}} \\ \frac{P_{2}}{P_{1}} &= \frac{1+k\mathrm{Ma}_{1}^{2}}{1+k\mathrm{Ma}_{2}^{2}} = \frac{2k\mathrm{Ma}_{1}^{2}-k+1}{k+1} \\ \frac{\rho_{2}}{\rho_{1}} &= \frac{P_{2}/P_{1}}{T_{2}/T_{1}} = \frac{(k+1)\mathrm{Ma}_{1}^{2}}{2+(k-1)\mathrm{Ma}_{1}^{2}} = \frac{V_{1}}{V_{2}} \\ \frac{T_{2}}{T_{1}} &= \frac{2+\mathrm{Ma}_{1}^{2}(k-1)}{2+\mathrm{Ma}_{2}^{2}(k-1)} \\ \frac{P_{02}}{P_{01}} &= \frac{\mathrm{Ma}_{1}}{\mathrm{Ma}_{2}} \left[\frac{1+\mathrm{Ma}_{2}^{2}(k-1)/2}{1+\mathrm{Ma}_{1}^{2}(k-1)/2} \right]^{(k+1)/[2(k-1)]} \\ \frac{P_{02}}{P_{1}} &= \frac{(1+k\mathrm{Ma}_{1}^{2})[1+\mathrm{Ma}_{2}^{2}(k-1)/2]^{k/(k-1)}}{1+k\mathrm{Ma}_{2}^{2}} \end{split}$$

TABLE A-14						
One-dimensional normal shock functions for an ideal gas with $k = 1.4$						
Ma_1	Ma ₂	P_2/P_1	$ ho_2/ ho_1$	T_2/T_1	P_{02}/P_{01}	P_{02}/P_{1}
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
00	0.3780	00	6.0000	∞	0	∞

← For air (γ = 1.40).

Note: This table also available on the course website under the <u>Links/Refs</u> tab.