ME 420

Professor John M. Cimbala

Lecture 21

Today, we will:

- Finish the example: normal shock in a C-D nozzle; *known* shock location
- Do another example: normal shock in a C-D nozzle; *unknown* shock location
- If time, begin to discuss *moving normal shocks* and how they differ from stationary

Example – Normal shock at a *known* location in a converging-diverging nozzle

Given: A large tank has upstream stagnation properties $T_0 = 800$ K and $P_0 = 1.00$ MPa. Air flows through a well-insulated converging-diverging nozzle. The back pressure is adjusted such that a normal shock sits at a location in the diverging portion of the nozzle where the area is twice the throat area. The nozzle exit area is three times the throat area.

To do: Calculate the pressure and Mach number at the exit plane.

Solution:

Assumptions and Approximations:

The air is an ideal gas. The flow is steady. The flow is approximated as adiabatic, one-D, and isentropic up to the shock and after the shock.

So far, from last time,

- We used isentropic relations from the reservoir to the shock. Got $M_1 = 2.1972$.
- Used normal shock relations *across* the shock. Got $M_2 = 0.54743$, $P_2/P_1 = 5.4656$, and $P_{02}/P_{01} = 0.62941$.
- Now we want to use isentropic relations again from the shock to the exit plane. But we do not know A_2^* .

7 A

We need
$$A_{2}^{*}$$
 to use $A_{A}^{*} = \delta_{12}(P_{1}, k)$ to get P_{1} derivation
of shack
 $M = 1$ derivation of shack
 A_{1}^{*} , $A_{2}^{*} \neq A_{1}$, $A_{1}^{*} \geq A_{1}^{*}$, $P_{1}^{*} = A_{1}^{*}$, $P_{1}^{*} = A_{1}^{*}$, $P_{2}^{*} = P_{2}^{*}$, $P_{2}^{*} = A_{1}^{*}$, $P_{2}^{*} = A_{2}^{*}$, $P_{2}^{*} = P_{2}^{*}$, $P_{2}^{*} =$

The
$$\frac{A_e}{A_z} = \frac{A_e}{A_z} \frac{A_z}{A_z} = 30 \cdot (0.619 \text{ Vi}) = 1.8972$$

USE THY TO FET Me
 $\frac{A}{A_z} = 6hc(M, x)$
Solve implementing for Me
 $\frac{A}{A_z} = 6hc(M, x)$
 $\frac{A}{A_z} = 6$

I verified all calculations in Excel, using a given C-D nozzle geometry:

Example – Normal shock at an *unknown* **location in a converging-diverging nozzle Given**: A large tank has upstream stagnation properties $T_0 = 800$ K and $P_0 = 1.00$ MPa. Air flows through a well-insulated converging-diverging nozzle. The nozzle exit area is three times the throat area. The back pressure is adjusted to 500 kPa. A normal shock sits somewhere in the diverging portion of the nozzle.

To do: Calculate the location of the shock in terms of its area ratio A/A^* .

Solution:

Assumptions and Approximations:

- 1. The air is an ideal gas.
- 2. The flow is steady.
- 3. The flow is approximated as adiabatic, one-D, and isentropic up to the shock.

5. After On Mack

To be completed in class.

4) Use
$$A_{T} = fri(M, \chi) \rightarrow get Me$$

 $A_{T} = fri(M, \chi) \rightarrow get Me$
 $JIE A_{Z}^{\chi}$
 $S) Gle Pe = \frac{Pe}{F_{02}} \frac{P_{01}}{F_{01}} \frac{P_{01}}{F_{01}}$
 $f_{01} = \frac{P_{02}}{F_{02}} \frac{P_{02}}{F_{01}} \frac{P_{02}}{F_{02}} \frac{P_{02}}{F_{0$

I put my calculations into Excel. The linear interpolation starts on the third iteration.

eration procedur	re to calcula	ate shock lo	cation:					
	Guess M ₁	A _s / A * ₁	M ₂	P ₀₂ / P ₀₁	A e / A*2	Final <i>M</i> _e	P _e /P ₀₂	P。(kPa
	2.1972	2.0000033	0.547431	0.62941204	1.88823612	0.3265025	0.9288219	584.61166
	2.3	2.1931308	0.534411	0.58329451	1.74988352	0.3565877	0.9158567	534.21416
linear interp →	2.3697895	2.337261	0.526399	0.55297951	1.65893852	0.3799332	0.9051873	500.55003
	2.3709298	2.3397074	0.526273	0.55249177	1.6574753	0.3803367	0.9049984	500.00418
	2.3709385	2.3397262	0.526272	0.55248803	1.65746409	0.3803398	0.904997	500
	2.3709385	2.3397262	0.526272	0.55248803	1.65746409	0.3803398	0.904997	500
	2.3709385	2.3397262	0.526272	0.55248803	1.65746409	0.3803398	0.904997	500
inal answers →	2.3709385	2.3397262	0.526272	0.55248803	1.65746409	0.3803398	0.904997	500
-inal answers →	2.3709385 2.3709385 2.3709385 2.3709385	2.3397262 2.3397262 2.3397262 2.3397262	0.526272 0.526272 0.526272 0.526272	0.55248803 0.55248803 0.55248803 0.55248803	1.65746409 1.65746409 1.65746409 1.65746409	0.3803398 0.3803398 0.3803398 0.3803398	0.904997 0.904997 0.904997 0.904997	

FINAL ANSWERS !