


ME 420	Pı	ofessor John M. Cimba	la Lecture 32
Today, we will:			
 Compare all the 1-D flows we have discussed qualitatively. Begin to discuss Fanno flow <i>quantitatively</i>: manipulate the equations to get them in a form applicable to the solution of Fanno flow problems 			
Qualitative Comparison of One-Dimensional Flows:			
See Handout – all on one page (here are the first two flows)			
Qualitative Comparison: Property Changes in Various One-Dimensional Compressible			
Flows Prepared by Professor John M. Cimbala, Penn State University. Latest revision: 13 November 2019			
	Converging duct	Normal shock	
$\mathbf{Flow} \rightarrow$		12	
Change →	Area change	Shock	
<u>Cons. Eqns.</u>	QVA = QVA	QV = QV	
Mass Momentum	$\rho_1 V_1 A_1 = \rho_2 V_2 A_2$ Used only if need to know force on duct	$\rho_1 V_1 = \rho_2 V_2$ $P_1 + \rho_1 V_1^2 = P_2 + \rho_2 V_2^2$	
Energy	$T_{01} = T_{02}$	$T_{01} = T_{02}$	
Property ↓	Subsonic Supersonic	Subsonic Supersonic	
V M s	No change No charge		
$\begin{array}{c} T \\ \rho \\ P \\ P \\ \end{array}$		Not Applicable	
P_0 T_0	No change No change	No change	
P,T,p go together (all 2) in all 2)			

Conjil only . Long piper
$$\Rightarrow$$
 Fully Developed
. Fait flows (fince comprished) \Rightarrow Turbulant
Recall Mooly Chart
 $f = \frac{1}{M} \frac{1}{M}$

Brek to

$$\begin{array}{c}
F_{Kin} = \begin{array}{c}
F_{Kin} \\
\hline \\
R_{i} = \begin{array}{c}
2 \\ 2 \\ 0 \\
\end{array} \end{array} \begin{pmatrix}
x_{2} \\ p \\ x_{1} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{2} \\ p \\ x_{1} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{2} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{2} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{2} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{2} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\ p \\ x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2} \\
x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2} \\
x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2} \\
x_{2} \\
x_{1} \\
x_{2} \\
\end{array} \end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2} \\
x_{2} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{2} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{$$