ME 420 Professor John M. Cimbala Lecture 35 Today, we will: Continue to derive the equations for 2-D oblique shocks; in particular, generate and • discuss the θ-β-M relationship Provide some qualitative comments about the θ - β -M relationship • Recall the geometry of an oblique shock from the previous lecture: Μ. Oblique shock B=oblique shock angle P_1 $V_{1, t}$ $V_{1, n}$ в-а \overrightarrow{V}_1

ß

Control

volume

Figure from Cengel and Cimbala, Ed. 4.

 $V_{2, n}$

β-θ

 $V_{2, t}$

 θ = turning angle

HOW ARE
$$\theta$$
, β , ξ , M , RELATED?
ANJ: THE $\theta - \beta - M$ relationship
From THE DIALRAM, $V_{1,t} = \frac{V_{1,n}}{t_{2,n}}$, $V_{2,t} = \frac{V_{2,n}}{t_{2,n}}$
BUT $V_{1,t} = V_{2,t}$ equate these
 $\frac{V_{1,n}}{V_{2,n}} = \frac{t_{0,n}(\beta)}{t_{2,n}}$ (6)
Now recall our normal whole relations: $\int_{0}^{2} = \frac{V_{1}}{V_{2}} = \frac{(Y+1)M_{1}^{2}}{2t(Y-1)M_{1}^{2}}$

PLUG IN
$$M_{1,n} = M_1 \sin \beta$$

So, the normal component eq. for our oblique shock becomy
 $\frac{V_{1,n}}{V_{2,n}} = \frac{(\chi_{11}) M_{1,n}^2}{2 + (\chi_{-1}) M_{1,n}^2} = \frac{(\chi_{-1}) M_1^2 \sin^2 \beta}{2 + (\chi_{-1}) M_1^2 \sin^2 \beta} = \frac{V_{1,n}}{V_{2,n}}$ (7)

EQUATE (6) i. (7):

$$\frac{\tan \beta}{\tan (\beta - \theta)} = \frac{(\chi + 1) M_1^2 \sin^2 \beta}{2 + (\gamma \cdot 1) M_1^2 \sin^2 \beta} (8)$$

TRUE IDENTITIES

$$\frac{\tan \theta = \frac{\sin \theta}{\cos \theta}}{\tan \theta = \frac{\sin \theta}{\cos \theta}} = \frac{\cos (2\beta) = \cos^2 \beta - \sin^2 \beta}{\tan \theta - \tan \theta}$$

$$\frac{\tan (\beta - \theta) = \frac{\tan \beta}{\tan \theta} - \tan \theta}{\tan \theta - \tan \theta}$$

$$\frac{(\cosh \alpha \sin y \sin y)}{(\cosh \alpha \sin y \sin y)} = \frac{2 \cot \beta (M_1^2 \sin^2 \beta - 1)}{M_1^2 (\chi + \cos 2\beta) + 2} (3)$$

our
analysis THE $\theta - \beta - M$ EQUATION FOR OBLIQUE SHOLKS \P

Comments:
$$\theta$$
 is a unger the chin of $M \stackrel{!}{!} \stackrel{!}{\beta}$
 $\theta = t_{2n}^{''} \left[\frac{2 \cot \beta (M_1^{''} rin^2 \beta - 1)}{M_1^{''} (\forall + \omega/2\beta) + 2} \right] \stackrel{!}{+} (s)$
 $\cdot T_{12} \stackrel{!}{q} is EXPLICIT for silving for θ
 $\cdot We an plot θ as a fix of $\beta \stackrel{!}{!} M_1$
THE $\theta - \beta - M$ PLOT
How TO CREARE THIS PLOT:
 $\cdot P_{1ck} \text{ an } M_1 (e.g., M_1 = 1.1)$
 $\cdot Create a range of β
 $\theta \stackrel{!}{=} \frac{90^{\circ}}{-} \frac{-}{89.8^{\circ}} - \frac{90^{\circ}}{-} \frac{-}{89.6^{\circ}} - \frac{1}{5} \frac{1}{5}$
 $\cdot U_{12} \stackrel{!}{=} g(s)$ to alc θ
 $e isch of the β 's
 $\cdot P_{1ct} = \theta \cdot i \beta \stackrel{!}{=} \frac{C}{-} \frac{1}{5} \frac{1}{5}$
 $\cdot P_{1ct} = \theta \cdot i \beta \stackrel{!}{=} \frac{C}{-} \frac{1}{5} \frac{1}{5}$
 $\cdot P_{1ct} = \theta \cdot i \beta \stackrel{!}{=} \frac{C}{-} \frac{1}{5} \frac{1}{5}$
 $\cdot P_{1ct} = \theta \cdot i \beta \stackrel{!}{=} \frac{C}{-} \frac{1}{5} \frac{1}{5}$
 $\cdot P_{1ct} = \theta \cdot i \beta \stackrel{!}{=} \frac{C}{-} \frac{1}{5} \frac{1}{5}$
 $T_{NE} = \theta - \beta - M PLOT !$$$$$

