ME 433 Professor J. M. Cimbala

Lesson 09 E: Sphere Drag

Sphere Drag 🛧

Today, we will:

- Discuss Drag on Spheres and various equations for sphere Drag Coefficient
- Do an example problem

Drag on Spheres:

Drag coefficient C_D on a sphere:

Problem: If use these in an IF statement, there are discontinuities.

Fortunately, there is a 2016 paper by **Faith A. Morrison** where she created a curve fit equation that spans the entire range of Reynolds number up to 10⁶. Here is the equation:

Here is a plot of $C_D(\text{Re})$ comparing Stokes, our segmented equations, and Morrison:

Example: Drag coefficient on a sphere

Given: A 1.55 mm sphere is moving in air at a speed of 1.25 m/s. The air properties are: $\rho = 1.246 \text{ kg/m}^3$ V= M7 $v = 1.426 \times 10^{-5} \text{ m}^2/\text{s}$ To do: Calculate the Reynolds number and the drag coefficient for this sphere. **Solution**: Using Morrisin 1 $\frac{Re = \frac{VD_p}{v}}{\sqrt{\frac{1}{1 + \left(\frac{Re}{5.0}\right)^{1.52} + \frac{0.411\left(\frac{Re}{2.63 \times 10^5}\right)^{-7.94}}{1 + \left(\frac{Re}{2.63 \times 10^5}\right)^{-8.00} + \frac{0.25\left(\frac{Re}{10^6}\right)^{-1.52}}{1 + \left(\frac{Re}{10^6}\right)^{-1.52} + \frac{1}{1 + \left(\frac{Re}{2.63 \times 10^5}\right)^{-8.00} + \frac{1}{1 + \left(\frac{Re}{10^6}\right)^{-1.52} + \frac{1}{1 + \left(\frac{Re}{10^6}\right)^{$ $\frac{10^6}{10^6}$ Re = (1.25 %)(1.55 mm) (1.55 mm) = [135.869 Re $C_D = Rut this in Excel, Muttub ... Software$ $<math>C_D = 0.90149$

IN EXLEL

