Equation Sheet for M E 433 Quizzes and Exams

Author: John M. Cimbala, Penn State University. Latest revision, 05 January 2015

Note: This equation sheet will be provided in electronic form as a pop-up window during the quizzes taken at the Testing Center. **Do not bring a printout of this equation sheet to the quiz**. This equation sheet has information for the entire semester **in order of presentation**; for the earlier quizzes, ignore the later pages. This sheet is also useful for homework, inclass poll questions, and the open-book portion of the final exam.

General and conversions:
$$g = 9.807 \frac{m}{s^2} \cdot \frac{[0.3048 \text{ m}]}{[1.6093 \text{ m}]} \cdot \frac{[1 \text{ kPa} \cdot \text{m}]}{[1 \text{ km}]} \cdot \frac{[1 \text{ kW} \cdot \text{m}]}{[1 \text{ km}]} \cdot \frac{[1 \text{ km}]}{[1 \text{ km}]} \cdot \frac{[1 \text{ kW} \cdot \text{m}]}{[1 \text{ km}]} \cdot \frac{[1 \text{$$

• Absorbing ground w/ inversion: $c_j = \frac{m_{j,s}}{2\pi U \sigma_v \sigma_z}$

$$c_{j} = \frac{\dot{m}_{j,s}}{2\pi U \sigma_{y} \sigma_{z}} \exp \left[-\frac{1}{2} \left(\frac{y}{\sigma_{y}} \right)^{2} \right] \left\{ \exp \left[-\frac{1}{2} \left(\frac{z - H}{\sigma_{z}} \right)^{2} \right] + \exp \left[-\frac{1}{2} \left(\frac{z - (2H_{T} - H)}{\sigma_{z}} \right)^{2} \right] \right\},$$

where H = effective stack height and H_T is the <u>elevation of the reflecting part of the</u> inversion.

• Fumigating, reflecting ground, far downwind:

$$c_{j,F} = \frac{\dot{m}_{j,s}}{\sqrt{2\pi}U\sigma_y H_T} \exp\left[-\frac{1}{2}\left(\frac{y}{\sigma_y}\right)^2\right]; \text{ at } y = 0, \quad c_{j,F} = \frac{\dot{m}_{j,s}}{\sqrt{2\pi}U\sigma_y H_T}$$

Table 20.1 Stability Classifications*

Surface Wind Speed ^a m/s	Incor	Day ning Solar Radi	Night Cloudiness ^e		
	Strong ^b	Moderate ^c	Slight ^d	Cloudy (≥4/8)	Clear (≤3/8)
<2	A	A–B ^f	В	E	F
2–3	A–B	В.	С	Ε.	F
3-5	В	B-C	С	D	Е
5–6	С	C-D	D	D	D
>6	C	D	D	D	D

^a Surface wind speed is measured at 10 m above the ground.

* A = Very unstable D = Neutral

B = Moderately unstable E = Slightly stable

C = Slightly unstable F = Stable

Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.

Table 20.2 Values of Curve-Fit Constants for Calculating Dispersion Coefficients as a Function of Downwind Distance and Atmospheric Stability

			<i>x</i> < 1 km			x>1 km		
Stability	а	b	С	ď	f	C	d	f
Α	213	0.894	440.8	1.941	9.27	459.7	2.094	-9.6
В	156	0.894	106.6	1.149	3.3	108.2	1.098	2.0
C	104	0.894	61.0	0.911	0	61.0	0.911	0
D	68	0.894	33.2	0.725	-1.7	44.5	0.516	-13.0
Ε	50.5	0.894	22.8	0.678	-1.3	55.4	0.305	-34.0
F	34	0.894	14.35	0.740	-0.35	62.6	0.180	-48.6

Adapted from Martin, 1976.

Gaussian puff diffusion model: $\sigma_{xi} = \sigma_{yi} = ax^b$, $\sigma_{zi} = cx^d$, but x in units of m, not km, and σ_{yi} and σ_{zi} in units of m.

Use these empirical values for the instantaneous diffusion coefficients, depending on atmospheric stability conditions:

Stability condition	а	b	c	d
Unstable	0.14	0.92	0.53	0.73
Neutral	0.06	0.92	0.15	0.70
Very stable	0.02	0.89	0.05	0.61

Adapted from Slade (1968), as found in Heinsohn and Kabel (1999).

• Absorbing ground:
$$c_{j}(x, y, z, t) = \frac{m_{j}}{\pi \sqrt{2\pi} \sigma_{xi} \sigma_{yi} \sigma_{zi}} \exp \left\{ -\frac{1}{2} \left[\left(\frac{x - Ut}{\sigma_{xi}} \right)^{2} + \left(\frac{y}{\sigma_{yi}} \right)^{2} + \left(\frac{z - H}{\sigma_{zi}} \right)^{2} \right] \right\}$$

• Ground level dose, absorbing ground: $D_j(x, y, 0) = \frac{m_j}{\pi U \sigma_{yi} \sigma_{zi}} \exp \left\{ -\frac{1}{2} \left[\left(\frac{y}{\sigma_{yi}} \right)^2 + \left(\frac{H}{\sigma_{zi}} \right)^2 \right] \right\}, \text{ (double for reflecting)}.$

^b Corresponds to clear summer day with sun higher than 60° above the horizon.

^c Corresponds to a summer day with a few broken clouds, or a clear day with sun 35-60° above the horizon.

d Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun 15–35°.

^e Cloudiness is defined as the fraction of sky covered by clouds.

f For A-B, B-C, or C-D conditions, average the values obtained for each.

Single-drop collection grade efficiency: $E_d(D_p) = \left(\frac{r_1}{R_c}\right)^2 = \left(\frac{Stk}{Stk + 0.35}\right)^2$, where $Stk = \frac{\left(\rho_p - \rho\right)D_p^2\left(U_0 - V_{t,p}\right)}{18\mu D_s}$

Overall collection grade efficiency: $E(D_p) = 1 - \exp\left(-\frac{L}{L_c}\right)$, where $L_c = \frac{2}{3} \frac{Q_a}{Q_s} \frac{V_c}{V_{t,c}} \frac{D_c}{E_d(D_p)}$, $V_c = V_{t,c} - U_a$ for a spray

chamber. L_c must be estimated or calculated for a *wet scrubber* – depends on size and shape of the *packing material*.

<u>Air Filters</u>: (ε = porosity, U_0 = air speed, L = filter thickness, $E_f(D_p)$ = single-fiber collection efficiency)

$$Stk = \frac{\left(\rho_p - \rho\right)D_p^2\left(U_0/\varepsilon\right)}{18\mu D_f}, E_f\left(D_p\right) = \left(\frac{Stk}{Stk + 0.425}\right)^2, L_c = \frac{\pi}{4} \frac{\varepsilon}{1 - \varepsilon} \frac{D_f}{E_f\left(D_p\right)}, E\left(D_p\right) = 1 - \exp\left(-\frac{L}{L_c}\right)$$

Electrostatic Precipitators: (ESPs)

$$E(D_p) = 1 - \exp\left(-\frac{L}{L_c}\right)$$
, where L_c is dependent on voltages, particle composition, air speed, gap widths, and many other

parameters. On quizzes and exams, L_c would either be given, or would be the variable to be calculate.

Polydisperse Aerosol Particle Statistics:

- j = class (bin) number with range $D_{p,\min,j} < D_p \le D_{p,\max,j}$, width $\Delta D_{p,j}$, and mid value $D_{p,j}$ for j = 1 to J.
- n_i = number of particles in bin j, and n_t = total number of particles in the sample, $n_t = \sum n_i$.
- $f(D_{p,j})$ = fraction of particles per bin width = $n_j/(\Delta D_{p,j} n_t)$.

Median diameter: $F(D_{p,50}) = 0.50$. For number distribution, use $D_{p,50}$ (number); for mass use $D_{p,50}$ (mass).

Arithmetic mean diameter:
$$D_{p,am} = \int_0^\infty D_p f(D_p) dD_p = \frac{1}{n_t} \sum_{j=1}^J (n_j D_{p,j})$$

Geometric mean diameter:
$$D_{p,gm} = \left(D_{p,1}^{n_1}D_{p,2}^{n_2}...D_{p,j}^{n_j}...D_{p,j}^{n_j}\right)^{\frac{1}{n_t}} = \exp\left[\frac{1}{n_t}\sum_{j=1}^{J}\left(n_j\ln\left(D_{p,j}\right)\right)\right], D_{p,gm} = D_{p,50} = D_{p,\text{median}}$$

Geometric standard deviation:
$$\sigma_g = e^{\ln(\sigma_g)}, \quad \ln(\sigma_g) = \sqrt{\frac{\sum_{j=1}^J \left\{ n_j \left[\ln(D_{p,j}) - \ln(D_p)_{,am} \right]^2 \right\}}{n_t - 1}}, \quad \ln(D_p)_{,am} = \frac{\sum_{j=1}^J \left[n_j \ln(D_{p,j}) \right]}{n_t}$$

Or,
$$\sigma_g = \frac{D_{p,50}}{D_{p,15,9}} = \frac{D_{p,84.1}}{D_{p,50}} = \sqrt{\frac{D_{p,84.1}}{D_{p,15,9}}}$$
, and σ_g is the same whether based on the number or the mass distribution. So, we can

use *either* the number or mass values of
$$D_{p,50}$$
, $D_{p,15.9}$, and $D_{p,84.1}$, i.e.,
$$\sigma_g = \frac{D_{p,50}(\text{number})}{D_{p,15.9}(\text{number})} = \frac{D_{p,50}(\text{mass})}{D_{p,15.9}(\text{mass})}$$
, etc., where

$$D_{p,gm}$$
 (number) = $D_{p,50}$ (number), and $D_{p,gm}$ (mass) = $D_{p,50}$ (mass)

Conversion from number distribution to mass distribution:
$$m_j = n_j \rho_p \frac{\pi}{6} (D_{p,j})^3$$
. Mass fraction: $g(D_{p,j}) = \frac{m_j}{m_t}$, but

we plot histograms as $g(D_{p,j})$ for nonequal bin widths. **Cumulative mass distribution**: $G(a) = \int_{0}^{a} g(D_{p,j}) dD_{p}$

Since
$$\ln(D_{p,50} \text{ (mass)}) = \ln(D_{p,50} \text{ (number)}) + 3\left[\ln(\sigma_g)\right]^2$$
, $\sigma_g = \exp\left\{\sqrt{\frac{\left[\ln(D_{p,50} \text{ (mass)}) - \ln(D_{p,50} \text{ (number)})\right]}{3}}\right\}$

Overall particle removal efficiency:

$$\boxed{E_{\text{overall}} = \sum_{j=1}^{J} \left[E\left(D_{p,j}\right) \frac{m_{j}}{m_{t}} \right] = \sum_{j=1}^{J} \left[E\left(D_{p,j}\right) \frac{c_{j}}{c_{\text{overall}}} \right]}$$