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George T. Yates How Microorganisms Move through 
Water 

The hydrodynamics of ciliary and flagellar propulsion reveal 
how microorganisms overcome the extreme effect of the 

viscosity of water 

The various organisms that propel 
themselves through an aqueous 
environment span over 19 orders of 

magnitude in body mass. At one 
extreme are blue whales, the largest 
animals ever to inhabit the earth, and 
at the other are microscopic bacteria. 
In terms of absolute speed, the larger 
organisms swim faster; when speeds 
relative to body size are compared, 
however, microorganisms are the 
true champions. Single-celled organ 
isms, typically between 2 and 1,000 
(xm long, can sustain swimming 
speeds up to about 100 body lengths 
per second. Large pelagic fish like 
tuna can maintain speeds of only 
about 10 body lengths per second, 
while the world record for human 
swimmers is just over one body 
length per second. 

In all cases, an organism accom 

plishes self-propulsion by putting its 

body or appendages through period 
ic movements. After one cycle of the 

motion, the organism and its appen 
dages return to their original configu 
ration, but the mean body position is 

moved forward. The types of appen 
dages used, the types of motion em 

ployed, and the very nature of the 
fluid forces encountered differ great 
ly for the various swimmers through 
out the vast size range. This article 
will concentrate on the movements 
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of and the forces experienced by the 
smallest organisms. 

A single drop of water from a 

pond or stream will usually contain 
hundreds of organisms invisible to 
the naked eye, a large percentage of 

which are capable of swimming un 
der their own power. There are more 
than 50,000 known species of Proto 
zoa alone, with new ones being de 
scribed at an average rate of more 
than one a day, and most swim at 
some stage of their life cycle (Jahn et 
al. 1979). Besides being found swim 

ming freely, microorganisms com 

monly occur inside larger organisms, 
where they exist in symbiotic or para 
sitic relationships, and some are re 

sponsible for disease. 
Detailed observations of the 

movements of these tiny organisms 
became possible only after the inven 
tion of the light microscope. The elec 
tron microscope has added a new 
dimension to the study of their motil 

ity, by providing sharp, highly mag 
nified fixed images for close examina 
tion of the microstructures associated 
with locomotion. With the aid of 
these powerful tools, cilia and flagel 
la have been identified as the cellular 

appendages whose movements are 
most frequently responsible for self 

propulsion of microorganisms (Fig. 

To appreciate fully how propul 
sion is achieved by ciliary and flagel 
lar activity, it is essential to under 
stand some fundamental principles 
of hydrodynamics. After a brief re 
view of the relevant principles, we 
will look at the structures of cilia and 

flagella. With knowledge of both flu 
id dynamics and biology in hand, we 

will then be able to discuss the me 
chanics of propulsion in detail. This 

subject, a subdivision of biofluiddyn 
amics, is by its very nature interdisci 

plinary; it requires collaboration by 

the various fields of engineering, 
physics, applied mathematics, and 

biology (see for example Gray and 
Hancock 1955; Holwill 1966; Wu et al. 

1975; Brennen and Winet 1977). 

The effects of viscous 
flows 
The larger and more familiar free 

swimming animals, such as fish and 
cetaceans, derive their propulsive 
thrust by accelerating water back 

ward, taking advantage of the equal 
and opposite inertial reaction force to 
overcome the viscous fluid force 
which would otherwise slowly arrest 
their motion. The dominance of iner 
tial forces in these cases is evident 
from the maneuvers of a large ship 
approaching a harbor. As an experi 
enced mariner will explain, the snip's 
power must be turned off, or even 

reversed, well before the ship 
reaches the dock, because the action 
of viscosity on the hull only gradually 
affects the ship's overwhelming mo 

mentum. 

The ratio of inertial to viscous 
forces in fluid flows is indicated by a 
nondimensional quantity called the 

Reynolds number. For a body of di 
mension L moving with velocity U in 
a viscous fluid, the inertial force is 

proportional to p(UL)2, the viscous 
force varies like (xUL, and the Reyn 
olds number is defined as Re = 

pUL/ 
jx, where p is the density and jjl the 

viscosity of the surrounding fluid. 
For fish or humans, the Reynolds 
number is typically about one mil 
lion, and inertia dominates the fluid 

motion. As the body dimension di 
minishes to the scale of microscopic 
organisms, viscous forces dominate 
inertial forces, and the Reynolds 
number becomes 0.1 or smaller. At 
the even smaller dimension of the 
individual cilia and flagella, which 
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Figure 1. Cilia and flagella are the 

appendages that propel microorganisms 
through water. They are distinguished from 
each other by their length relative to the cell 

body, as well as by their structures and 
characteristic movements. Flagella are often 
attached to one end of the body, and are 

frequently more than twice the length of the 

body. The bacterium Salmonella abortus 

equi (top) has many flagella, which form a 
bundle that is clearly visible behind the 10 jJLlTl 
cell body in this electron micrograph. The bundle intermittently unwraps and reforms, thus 

changing the swimming direction. A spermatozoon from a sea squirt Ciona (bottom left) is 

shown swimming in sea water in this series of flash photographs (top to bottom, 200 flashes 

per second) taken with a light microscope. The propulsive wave is planar and propagates to 

the right along the flagellum. Consequently, the cell moves to the left. Cilia (bottom right), 
which are usually much shorter than the body, are numerous and arranged in rows on the 

body surface. Gradual variation in the phase of the beat cycle along the length of the cell 

leads to the coordinated wave pattern seen in this scanning electron micrograph of the 

microorganism Paramecium. (Top photograph from Routledge 1975; bottom left photograph 
from Omoto and Brokaw 1982; bottom right photograph from Tamm 1972.) 

oscillate typically between 10 and 30 

cycles per second, the Reynolds 
number is usually less than 10~5. 
Because the inertial effects are of no 

significance at these small scales of 
motion, microorganisms are unable 
to take advantage of the inertial reac 
tion and must derive their forward 
thrust from viscous reactions. 

The typical viscous forces which 
act on a human swimmer are at least 
6 orders of magnitude smaller than 
the inertial forces. To appreciate the 
nature of the viscous forces experi 
enced by microorganisms, we would 
have to swim in a fluid one million 
times more viscous than water. Even 
in a pool filled with honey the rela 
tive strength of viscous to inertial 
forces would be two orders of magni 
tude smaller than it is for microorga 
nisms swimming in water, and a 
more appropriate fluid would be mo 
lasses or even tar. 

Whenever the Reynolds number 
is small, the rate of change in mo 

mentum over time can be neglected 
relative to the viscous and pressure 
components, and time becomes sim 

ply a parameter. This means that the 
fluid motion generated in response 
to a microorganism's movement de 

pends on its instantaneous velocity, 
and not on its velocity at any previ 
ous instant or on the rate of change 
of any other quantity with time. Fur 
thermore, because the fluid inertia 

(mass times acceleration) is negligibly 
small, any external force must be 
balanced by the viscous stress and 
the pressure in the fluid. 

We can now begin to appreciate 
the difficulties encountered in achiev 

ing self-propulsion at low Reynolds 
numbers. For a swimmer?for exam 

ple, a human in an ocean of molas 
ses?who moves his arms from a 

given starting position to a final con 

figuration, the instantaneous fluid 
force depends linearly on the velocity 
of the body motions. When the 
swimmer stops moving, not only 
does his absolute motion stop, but all 
the surrounding fluid comes to rest 

immediately, because there are no 
inertial effects. Furthermore, if the 
swimmer exactly retraces the paths 
followed by his arms to their initial 

configuration, he will find himself 

(and the fluid) in exactly the same 

position from which he started. How 
then can living creatures accomplish 
self-locomotion under such condi 
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tions? The answer to this question 
lies in the detailed dependence of the 
viscous forces on the flow velocity 
and orientation, which I will discuss 
after looking at the tools nature has 

provided to enable microorganisms 
to swim freely in their environment. 

The structures of cilia and 
flagella 
The etymology of the terms cilium 
and flagellum indicates not only the 

appearance of these structures but 
also the type of movement they per 
form. "Cilium" is derived from the 
Latin word meaning eyelid, and 

brings to mind many closely spaced 
hairs capable of rapid, synchronized 
movement. "Flagellum" comes from 
the Latin word for whip, suggesting 
a long, flexible rope which can be 
made to move in a wide variety of 

ways. A closer examination of both 
the structure and the movement of 
cilia and flagella reveals some impor 
tant differences which give them spe 
cial advantages over eyelashes or 

whips. 
In both prokaryotes (bacteria) 

and eukaryotes (organisms that have 
their cell nuclei enclosed in a mem 

brane, such as protozoans and algae) 
and in the sperm cells of higher 
animals, the propulsive organelle has 

traditionally been called a flagellum, 
but it is now considered a form of 
cilium in eukaryotes (Jahn et al. 

1979). The relatively rigid, helical 

shaped flagella of bacteria are about 
0.02 |xm in diameter and are con 
structed from subunits of a protein 
called flagellin with a core about 
0.003 |mm in diameter. Although it 
varies greatly from species to species, 
the length of a bacterial flagellum is 
almost always more than 100 times 
its thickness. A rotary joint attaches 
the flagellum to the cell body and 
allows it to rotate during locomotion 

(Berg 1975; Routledge 1975; Macnab 
and Aizawa 1984). 

Cilia, eukaryotic flagella, and the 

flagella of sperm cells all have essen 

tially the same anatomy, which dif 
fers greatly from that of bacterial 

flagella. Nine outer pairs of microtu 
bules surround a central pair of mi 

crotubules, all contained within a 

roughly circular cross section about 
0.2 fxm in diameter. These microtu 
bules can bend but are nearly inex 
tensible. They run almost the entire 

length of the cilium and are joined by 
cross arms or bridges which permit 
them to slide against each other (Satir 
1974). By the bonding and unbond 

ing of these cross arms, the cilium 
can generate a bend anywhere along 
its length. 

Eukaryotic flagella actively bend 

along their length in two- or three 
dimensional waves, and prokaryotic 
flagella rotate as more or less rigid 
helices. Although the internal struc 
tures and mechanisms of producing 

motion of eukaryotic and prokaryotic 
flagella are greatly different, we will 
consider the mechanics of propulsion 
of both classes together. The single or 

multiple flagella of these microorga 
nisms are relatively long (at least one 
half and frequently considerably 
more than the length of the body) 
and are often attached to one end of 
the body. The body length of flagel 
lates rarely exceeds 50 |mm, while 
their flagella are often longer than 
100 jam. 

Cilia are relatively short (much 
less than the body length), are usual 

ly numerous, and are arranged in 
rows on the body surface. In terms of 
overall body size, ciliates are general 
ly larger than flagellates, with some 

species attaining lengths of 1 to 2 
mm. The individual cilia have a fairly 
regular beat pattern with two distinct 

phases. The forward (power or effec 

tive) stroke is rapid, with the cilium 

fully extended. The return (recovery) 
stroke, which appears as if a bend 

were propagated from the base to the 

tip of the cilium, is slower, with the 
cilium bent close to the cell surface. 
As we shall see, this asymmetry in 
the beat is an essential feature for 
effective functioning of the cilium. 

Because the phase of the beat 

cycle varies gradually from one cili 
um to another over the body, an 

organized wave is observed. This 
wave may travel in the same direc 
tion as the effective stroke or in an 

opposite direction. The types of both 
wave and beat patterns are widely 
varied among the numerous species 
of ciliates. The control of the coordi 
nated motions of the cilia in these 

single-celled organisms, which lack a 
nervous system, remains largely un 
known. The most likely underlying 
mechanisms include changes in 
membrane potentials or ion concen 

trations, with or without hydrody 
namic coupling. 

The mechanics of 
propulsion 
The fluid force resisting the motion of 
an object moving at a low Reynolds 
number is linearly proportional to the 

velocity of the object, and depends 
on the flow orientation. Except for 

simple geometries, it is difficult to 
calculate this force and the resulting 
fluid velocities. The long, thin geom 
etry of cilia and flagella lends itself to 
some simplifying approximations 
that have been used to develop resis 
tive force theory and slender body 
theory. These two theories have been 

highly successful in explaining the 
mechanics of ciliary and flagellar pro 
pulsion. 

For objects that are much longer 
than they are wide and have circular 
cross sections, the fluid force per unit 

length is conveniently split into a 

longitudinal force (Fs) and a trans 
verse force (Fn). These two compo 
nents of force can be estimated from 
the formulas 

Fs 
= 

-|xCsUs 
and 

Fn 
= - 

^CnUn 

where Us and Un are the tangential 
and normal velocities of the particu 
lar cross section relative to the fluid. 
The constants of proportionality Cs 
and Cn are generally different and 

depend on the shape of the body, 
but are independent of the fluid vis 

cosity (jl and the velocities Us and Un. 
The ratio of the force coefficients 7 = 

Cs/Cn takes on the value 1 for a 

sphere and approaches 0.5 in the 

limiting case of a slender body that 
becomes longer and longer while re 

taining the same width. 
These two formulas constitute 

the basis of resistive force theory. 
The essential features of this theory 
are illustrated in Figure 2, where it is 

applied to the settling of a long, thin 
rod inclined at an angle a from the 
horizontal. The buoyancy force Fb, 
the object's mass times the accelera 
tion of gravity minus the hydrostatic 
pressure force, acts downward and, 
in the absence of inertia, must be 
balanced by the viscous fluid forces. 
The surprising result is that the rod 
does not fall straight down in the 
direction of the buoyancy force but 
rather has a component of velocity 
perpendicular to gravity. This lateral 

migration of the rod occurs only 
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when y < 1 and becomes more pro 
nounced as 7 becomes smaller. 

The possibility of self-propulsion 
is a direct result of y being less than 
one. Take the example of an ice skat 
er who is in the middle of a pond and 
wishes to reach the bank without 

lifting his skates off the ice. If the 
skater were to use a pair of poorly 
designed skates for which Cs 

= Cn (7 = 
1), then the resistive force would 

be aligned parallel to the motion and 
he would be unable to produce a net 
forward movement, no matter how 
hard he tried. Making application of 
the results shown in Figure 2, he 
should use a pair of skates that have 
a very small resistance to movement 

parallel to the blades (small Cs) and 
that have a very large resistance to 

sideways movement (large Cn). By 
holding his feet at an outward-point 
ing angle and pushing them apart, 
he will begin to move forward (just 
as the rod in Figure 2 drifts laterally). 

When he pulls his feet back together, 
he should point his toes inward to 

produce a further forward propul 
sion. 

The major strengths of resistive 
force theory are its simplicity and 
relative ease of application for obtain 

ing approximate results. Its weak 
nesses are that appropriate values for 
the resistive force coefficients are not 

always obvious, the local fluid veloci 
ties are not predicted, and interac 
tions between the flagellum and the 
cell body or flow boundaries are diffi 
cult to account for in a systematic 
manner. The more rigorous slender 

body theory overcomes these diffi 
culties and provides a systematic 

method of approximating the flow 
field and hence the forces on long, 
thin objects. Slender body theory is 
based on the fundamental concepts 
of mass and momentum conserva 
tion at low Reynolds numbers, which 
result in a system of linear partial 
differential equations, the so-called 
Stokes equations. These equations, 
with appropriate boundary condi 
tions, can be solved in a variety of 

ways; I will outline only one ap 
proach which has been successfully 
applied to the swimming of microor 

ganisms. The advantage of slender 

body theory is that solutions of de 
sired accuracy can be obtained, and 
its disadvantage is that it can require 
tedious and involved computations. 

It should be emphasized that 

Stokes equations are linear in the 
fluid velocity and therefore allow the 
use of a general solution technique 
known as the singularity method. 
This technique is commonly applied 
to problems throughout engineering 
and science when the governing 
equations are linear. If two different 
solutions of Stokes equations are 

known, say Ui and u2, then a third 
solution u can be found by taking a 
linear combination of these two (u 

= 

Aui + Bu2, where A and B are 

arbitrary constants). The process can 
be repeated again and again, and 
thus a few relatively simple funda 

mental solutions can be used to con 
struct a whole family of solutions. In 
the present application, various fun 
damental solutions can be distributed 

along the cilia or flagella, cell body, 
and flow boundaries, and the result 

Figure 2. Resistive force theory helps explain 
the fluid forces acting on an organism 

whose movement is dominated by viscous 
effects. The theory is illustrated here by an 

inanimate object, a long, slender rod settling 
under the action of gravity at a low 

Reynolds number. The rod migrates laterally 
as it falls. The net buoyancy force Fb is 
balanced by the fluid resistive force F, 
which has two components, one normal (Fn) 
and the other tangential to the rod (FJ. 
These forces are linearly proportional to the 
normal and tangential components of the 
rod's velocity, U? and Us respectively. A 

simple relation between a and 0 results 
from the quotient Fs/Fn, and depends only 
on the ratio of the force coefficients 7 = Q/ 
Cn. By symmetry, whenever a is 0? or 90?, 6 
is zero, and thus 0 must have a maximum 
for some intermediate values of a. For 7 = 

0.5, this occurs when a ? 35? and results in 
a maximum lateral migration of the rod with 
0 ? 19?. 

ing combined flow may represent the 

swimming of a microorganism. 
As a basic building block, we 

will use a solution of Stokes equa 
tions which corresponds to placing a 

point force with a given magnitude F 
= 

8tt|xoi in the fluid. The fundamen 
tal singular solution of this problem, 
called a stokeslet (Figs. 3 and 4), has a 

velocity field which decays like 1/r, 
where r is the distance from the 
external force to the measuring point. 
This extremely slow decrease of ve 

locity with distance from the distur 
bance is especially noteworthy: it in 
dicates that the stokeslet will have a 

far-reaching influence on the flow 
field. 

If we allow mass to be created at 
a point inside the flow field, Stokes 

equations admit another singular so 

lution, a source (Fig. 4), which has a 

radially outward flow velocity that 
falls off like 1/r2. A sink is the oppo 
site of a source, having an inward 
flow velocity. From appropriate com 
binations of stokeslets, sources, and 
sinks, other higher-order singulari 
ties which satisfy the governing 
equations can be obtained (Batchelor 
1970; Blake 1971; Chwang and Wu 
1976). One of these, the potential 
doublet, is the limiting case of a 
source and a sink approaching each 
other. It results in a velocity field 
which decays like 1/r3. 

A potential doublet with 

strength ? 
= a3U/2 satisfies the 

boundary condition of no normal ve 

locity on a sphere of radius a translat 

ing?that is, moving without rotat 

ing?with constant velocity U. This 
doublet also satisfies Stokes equa 
tions; however, there are tangential 
fluid velocities on the sphere surface, 

which are impossible in viscous 
flows. For an object moving at a low 

Reynolds number, the fluid velocity 
at the body surface must be equal to 
the velocity of the body, a require 

ment called the no-slip boundary 
condition. This condition can be sat 
isfied for a sphere by linearly super 
posing a stokeslet of strength a = 

3aU/4 and a doublet of strength ? 
= 

-a3U/4 (Fig. 3). The importance of 
the stokeslet strength is seen when 

we consider the resulting fluid force 
found by integrating the stresses 
over the surface of the sphere, which 

yields the Stokes drag formula 

F = ? 
$7T\X0L 

= ? 
6Tru,aU 
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From this we note that the mean 
stokeslet strength is directly related 
to the mean external force acting on 
the body. This association remains 
valid for all bodies undergoing gener 
al motions at a low Reynolds num 
ber. 

More difficult problems can be 
solved by distributing the various 

singularities within a body or on the 

body surface, and by adding together 
the velocity fields from all the singu 
larities. The strengths of the singular 
ities are chosen so that the no-slip 
boundary condition on the body sur 
face is satisfied. Evaluating the 

strengths involves solving a compli 
cated system of integral equations. 

The slenderness of cilia and fla 

gella allows the flow singularities to 
be distributed along an organelle's 
center line. It further permits all the 

singularities except stokeslets outside 
a certain "near field" region to be 

neglected, and thus the integral 
equations are greatly simplified. Ve 
locities due to distant singularities 
decay rapidly with distance and 
make only higher-order contribu 
tions. The stokeslet must be retained 

along the entire body length, because 
its velocity field decays very slowly, 
falling off, as we have seen, like 1/r. 
The wide-ranging influence of the 
stokeslets implies that there will be 

stokeslet 

strong interactions among adjacent 
cilia, the cell body, and neighboring 
cells or boundaries, and this in turn 
causes some difficulty in obtaining 
analytic results or in carrying out 
numerical computations. 

In approximating the flow field 
far from the body, we can combine 
like singularities into equivalent sin 

gularities positioned at the center of 
the cell. Although the detailed flow 
velocities very close to the body are 
lost, the overall fluid flow as seen 
some distance from the organism can 
be easily estimated by only one or 
two equivalent singularities (Fig. 5). 

How flagellates and 
ciliates swim 
Using resistive force coefficients, 
Hancock (1953) and Gray and Han 
cock (1955) made major contributions 
to research on flagellates when they 
proposed using 7 = 

Cs/Cn 
= 0.5 and 

a simple formula for Cs which de 
pends only on X/b, where X is the 

length of the propulsive wave and b 
is the radius of the cross section (Fig. 
6). Further refinements of the coeffi 
cients have been made for three 
dimensional shapes, with 7 ranging 
between 0.6 and 0.7 (Cox 1970; Tillet 
1970; Lighthill 1976). 

By direct application of resistive 

doublet 

force theory to each differential ele 
ment along the length of a flagellum, 
Gray and Hancock were able to esti 
mate the fluid force and moment per 
unit length. The total force and mo 
ment are then obtained by summing 
the contribution from each element. 
If the organism is self-propelling, the 
total mean thrust of the flagellum 
(the total mean fluid force in the 
direction of motion) must be equal to 
the drag of the head, which is ap 
proximated by the drag on a sphere 
of radius a?the Stokes drag formula 
noted above. 

The rate of work done by the 

flagellum per unit length amounts to 

Cn(Un)2 + CS(US)2. When this is inte 

grated over the entire flagellum and 

averaged over time, and the result is 
added to the rate of work done in 

moving the head through the fluid, 
the total mean power consumption 
of the organism can be found. We 
can then estimate the efficiency tj of 
this mode of propulsion as the ratio 
of the mean rate at which useful 
work is done to the total mean power 
consumption. Using this definition, 
Lighthill (1975) has shown that the 
maximum efficiency of propulsion 
for a general planar wave is bounded 

by 

doublet + stokeslet* 

Figure 3. Slender body theory supplements resistive force theory, tangential to the surface. To conserve linear momentum, the 
providing a systematic method of approximating the flow field pressure forces, viscous forces, and external forces must always be 
around an object by solving the Stokes equations with the no-slip in equilibrium. For a stokeslet, the viscous forces and the pressure 
boundary condition. The use of flow singularities and the balance forces combine to balance an external force. In the case of a 
of forces in a viscous fluid at low Reynolds numbers are illustrated doublet, the total normal stress exactly balances the net shear stress, 
here by the distribution of fluid forces on an imaginary sphere, and an external force cannot be balanced. The combination of a 
which are attributable to the pressure (black arrows) and to viscous doublet and a stokeslet of appropriate strengths yields the flow 
forces (color arrows). The viscous forces have two components, a field around the sphere. The stokeslet and doublet have both 
normal stress perpendicular to the surface and a shear stress magnitude and direction (indicated by a and ?). 
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stokeslet source doublet 

Figure 4. The flow fields resulting from three simple singular solutions of Stokes equations?a stokeslet, source, and potential doublet?are 

shown here. The magnitude of the fluid velocity varies along the streamlines, decreasing in all cases to zero far from the singularity. The 

magnitude and direction of the stokeslet and doublet are indicated by a and ?. The circles show the location of the sphere used for evalu 

ating the fluid forces in Figure 3. 

Clearly if 7 = 1, the propulsive effi 

ciency is zero and no swimming is 

possible, which agrees with our earli 
er example of an ice skater. Propul 
sive efficiency is generally poor for 

organisms that swim at low Reynolds 
numbers, because, for 7 = 0.5, tj is 
less than 0.09; it becomes even small 
er for larger values of 7. 

The force distribution along a 

planar beating flagellum will vary 
from thrusting in the regions where 
the flagellar segments are undergo 
ing transverse motion to drag in the 

regions where they align nearly par 
allel with the swirnming direction. 
This variation causes an increased 

energy consumption for a given 
thrust (Lighthill 1976). In contrast, a 

spiral or helical wave generates 
thrust uniformly along its length and 
thus may lead to more effective pro 
pulsion. 

Since they rotate, bacterial fla 

gella must use helical motions for 

propulsion. Spiral beat patterns are 
also commonly observed in eukary 
otic flagella. For planar beat patterns 
the linear forces balance; for helical 

waves, however, the torque must 
also be balanced, and this require 
ment cannot be fulfilled without a 
rotation of the whole organism. Rota 
tion must, in turn, cost the organism 
additional energy. For organisms 
with spherical heads and helical fla 

gellar beats, Chwang and Wu (1971) 
found the optimum head size to 

range between 10 and 40 times great 
er than the radius of the flagella. 
Propulsive efficiencies ranged from 
0.10 to 0.28. For organisms with 
smaller heads (a/b less than about 5), 
they concluded that a planar beat 

pattern would be more advanta 

geous. 

Using slender body theory to 

study flagellate swimming, Higdon 
(1979) and Johnson (1980) have 
found unfformly valid solutions for 
the entire flow field around microor 

ganisms. Direct comparisons be 
tween the resistive force model and 
slender body theory indicate that if 
the resistive force coefficients are in 
creased by about 35%, with 7 remain 

ing nearly unchanged, better agree 
ment with the more precise slender 

body theory is obtained (Johnson 

and Brokaw 1979). 
Three basic models for the pro 

pulsion of ciliates have been devel 

oped to adapt resistive force and 
slender body theory to the special 
characteristics of cilia, their relatively 
large number, short length, beat pat 
tern, and coordinated movements: 
the envelope model, the sublayer 

model, and the traction layer model. 
The envelope model assumes 

that the effects of all the individual 
cilia can be combined and the instan 
taneous positions of the cilia tips can 
be considered as a "body surface," 

Figure 5. The role of the singular solutions of Stokes equations is illustrated by the marked 

differences in the flow fields of a free-swimming organism (right) and one being drawn 

through the fluid by an external force (left). The flow is revealed in these time-exposure 

photographs by suspended particles 1 |xm in diameter. The streaks made by the particles 
form streamline patterns which can be compared to those in Figure 4. In both the flow 

pattern created by a dead paramecium (P. multimicronucleatum) settling under gravity toward 

the bottom of the picture and the flow pattern around a living paramecium swimming freely 
in a horizontal plane toward the lower left, the net stokeslet strength is proportional to the 

external force acting on the body. For a free-swimming organism, where the external forces 
are relatively insignificant, the sum of all the viscous forces and thus the resultant stokeslet 

strength become insignificant. Hence, far from the body, the velocity field behaves like a 

potential doublet. 
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an oscillating sheet on which the no 

slip boundary condition is applied. 
Taylor's (1951) original model has 
been extended by Blake (1971) and 
Brennen (1974), whose studies pre 
dicted that maximum propulsive ve 

locity and efficiency would be at 
tained when the cilia tips underwent 
an elliptic trajectory and obtained 
reasonable estimates of overall swim 

ming speeds compared to observed 

swimming speeds. The envelope 
model is justified when the concen 
tration of cilia is high and when their 

wave patterns move in the same di 
rection as the effective stroke. It must 
be abandoned whenever the flow 
inside the ciliary layer is to be consid 
ered or the assumption of an imper 
meable surface is violated, as may be 
the case for wave patterns moving in 
a direction opposite to the effective 
stroke and for widely separated cilia. 

The sublayer model, first pro 
posed by Blake (1972), addresses the 
flow within the ciliary layer, where 
the force on each cilium, and hence 
the stokeslet strength, is found using 
slender body theory. Since the cilia 

operate close to a wall (i.e., the cell 

body), the singularity types and 
strengths must be modified. For a 

single stokeslet above a wall, a sys 
tem of image singularities, which in 
cludes another stokeslet of equal 
strength but opposite sign and two 
other higher-order singularities, is 
needed below the wall to satisfy the 

no-slip boundary condition on the 
wall (Blake 1971). The flow field is 
then represented as an integral over 

all the elemental singularities on all 
the cilia and the image singularities. 
Blake solved this integral equation 
for the swimming speed by taking 
time averages, thus obtaining the 

mean velocity profile of the fluid 

tangential to the wall. The sublayer 
model is used when temporal varia 
tions in velocity are not needed, and 

when the cilia are widely spaced and 
the interactions between them are 

weak. 

In an effort to account for the 
variations in velocity over time, 
which can be quite large, Keller and 
his colleagues (1975) introduced the 
traction layer model, which smooths 
out the ciliary forces to form a contin 
uous body force inside the ciliary 
layer and retains the oscillatory ve 
locities. The resulting iterative solu 
tion shows that the oscillations in 

velocity are of the same order of 

magnitude as the mean flow compo 
nents within the ciliary layer and 

decay exponentially outside the lay 
er. 

The effects of walls 
In nature, motile cells are found both 
at some distance from and in the 
immediate neighborhood of walls. 

Almost all observations of swimming 
microorganisms are made in the vi 

cinity of solid boundaries in the form 
of glass microscope slides. Both in 
nature and in the laboratory, the 

presence of walls may considerably 
modify an organism's motions. 

TTie flow fields of a self-propel 

Figure 6. The kinematics of a swimming flagellate are illustrated by an organism with a 

spherical head of radius a and a single flagellum of diameter 2b. As the organism moves to 
the right at a constant mean speed V, a propulsive wave propagates backward along the 

flagellum at speed c. In this simplified example, the flagellum remains in the plane of the 

page, and both the wave amplitude h and the wave length X are constant. The highlighted 
segment of the flagellum is moving downward with velocity v in addition to moving 
forward with velocity V. The segment's total velocity U can be resolved into normal and 

tangential components. The viscous force F per unit length can be estimated by resistive 
force theory or by slender body theory. It has a component in the direction of motion (thrust) 

which, for a free-swimming organism, is balanced by the drag on the head. 

ling cell and of an object forced 

through the fluid are very different 
(see Fig. 5), and their interactions 

with external boundaries must be 
different as well. For free-swimming 
ciliates, the flow field decays rapidly 
away from the body, and we can 

expect the effects of walls to manifest 
themselves only when the organism 
is very close to a boundary (Winet 
1973). The effects of a boundary may 
be more evident when the thrust 
force is more widely separated from 
the drag forces, as in the case of 

flagellates. 
The head of a flagellate can be 

considered as an inert object moving 
under an external force, and there is 
no question that, for the same ap 
plied force, the velocity will decrease 
when the head moves close to a solid 

boundary. At low Reynolds numbers 
this boundary effect is very strong, 
and the speed can easily be reduced 

by more than 5% even when the 

object is ten head radii from the wall 
(Lee and Leal 1980). 

For a slender body moving near 
a wall, both the normal and tangen 
tial resistive force coefficients in 
crease. It is important to note that Cn 
increases proportionally more than 

Cs, so that 7 = 
Cs/Cn decreases and 

may even fall below 0.5 (Yang and 
Leal 1983). Recalling that propulsion 
becomes more efficient as 7 is re 
duced, we see that there are two 

competing effects as a flagellate ap 
proaches a solid boundary: one to 
enhance the performance (increase 
T|) and the other to retard the motion 
(increase the drag). The current data 
are insufficient to tell which effect 

predominates. 
Although data on the swimming 

speed of flagellates in relation to the 
distance from a wall are obscured by 
variations in the speed of individuals 
and possible changes in the rate of 
work, several other observations 

clearly show the important influence 
of the walls. Flagellates swim in 
curved paths near a solid boundary. 
For eukaryotic flagellates the typical 
ly three-dimensional beat pattern is 
flattened and approaches the limiting 
case of a two-dimensional planar 
beat. In addition, the beat frequency 
is noticeably lowered (Katz et al. 

1981). 
For a flagellate swimming paral 

lel to the wall and using a helical beat 

pattern, the segments of the flagel 
lum near the wall experience larger 
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forces than those parts away from 
the wall, and the forces and mo 

ments acting on the head are in turn 

changed. Besides altering the for 
ward speed and the rate of rotation 
around the direction of swimming, 
this asymmetrical distribution of 
forces creates a torque which rotates 
the organism in the plane of the wall. 
Thus, free-swimming cells move in 
curved paths near a wall. 

A rigorous analysis of the effects 
of walls can be accomplished by solv 

ing the Stokes equations using distri 
butions of singularities. Blake (1971) 
constructed an image system for an 
isolated stokeslet in the vicinity of a 

rigid wall, and others have expanded 
on this concept (Yang and Leal 1983). 
Comparisons between observations 
and these theories should lead to 
some interesting work in the future. 

Both resistive force theory and 
slender body theory shed consider 
able light on the basic features of 
fluid flows at very low Reynolds 
numbers. The far-reaching influence 
of the stokeslet is especially notewor 

thy, as is its association with the total 
external force on a body. Microorga 
nisms accomplish self-propulsion as 
a direct result of the fluid force's 

dependence on the flow orientation 
and the asymmetric movement of the 

organisms' cilia or flagella along peri 
odic paths. Our knowledge remains 

incomplete, especially regarding the 
effects of boundaries, interactions 

among cilia, three-dimensionality of 
the flows, and swimming in nonlin 
ear fluids such as mucus. There is no 
doubt that our understanding will 
continue to be expanded by collabo 
ration among the various branches of 

biology and engineering and by close 
interaction between observation and 

analysis. 
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