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1. (40 pts) Reconsider the thermal instability (Bénard) problem we discussed in class. We stated without proof that the even 

mode was more likely to occur than the odd mode. Rather than trying to prove this mathematically, we will instead calculate 
the critical Rayleigh number for the odd mode, and compare it to that of the even mode. Of course, the mode with the 
smallest critical value of Rayleigh number “wins”, and that mode is the one we would expect to see, which is the even mode. 
Start with the solution of the differential equation for modified amplitude W(z*) that we generated in class, 

  ( ) * * * * * * * *
0 0*

1 2 3 4 5 6
iq z iq z qz qz q z q zW z C e C e C e C e C e C e− − −= + + + + +   (1) 

 We considered only the even mode in class, and we re-grouped the six terms in the above equation into a simplified equation 
with only three constants, A, B, and C, in terms of cosines and hyperbolic cosines, namely, 

  ( ) ( ) ( ) ( )* * * * *
0cos cosh coshW z A q z B qz C q z= + +   (2) 

(a) Using the same notation as we did in the lecture notes for the even mode, consider the odd mode. Re-group the terms in 
the above equation for the odd mode and generate a simplified equation with only three constants, (for consistency, 
again call them A, B, and C), in terms of sines and hyperbolic sines, showing your work. For consistency, put your final 
expression in the following form: 

  ( ) ( ) ( ) ( )* * * * *
0sin sinh sinhW z A q z B qz C q z= + +   (3) 

 where the new constants A, B, and C are combinations of the C1, C2, ... etc. constants from above along with any factors 
of i or 2 as necessary. 

(b) For the odd mode, apply the boundary conditions and construct a 3x3 matrix equation for the solution of A, B, and C, as 
we did in class for the even mode. Again, show all your work; the algebra gets a little involved, but it is very similar to 
what we did in class. 

(c) Plot the marginal stability curve (thumb curve) for this odd mode. Calculate the minimum Rayleigh number (Racrit) for 
stability for the odd mode, along with the corresponding critical wavenumber Kcrit. Is the even mode indeed more likely 
to occur than the odd mode? Explain. Note: You may use any computer program you wish, but if you are using Matlab, 
the Matlab solution for the even mode case is posted on our course’s MNE website, main page. I suggest you start with 
this. If you are having trouble converging, try a different initial guess, as the solution is sensitive to the initial guess. 

 
 
2. (20 pts) Consider the Orr-Sommerfeld equation. In class we discussed only the temporal mode of instability. Using the 

same method of normal modes, it is also possible to consider the spatial mode of instability, which we will do here. 
(a) Re-write the O-S equation in standard form for an o.d.e. (highest-order term as first term on left, the right-hand side = 

0, and group all coefficients together for each order derivative of φ). Your final equation should be of the form 
[ ] [ ]coefficients coefficients 0yyyy yyφ φ φ− + = . 

(b) Consider the same exponential equations for the normal modes as given in class. After invoking Squires theorem we can 
simplify the u component of the disturbance to ˆ( , , , ) ( ) ikx i tu x y z t u y e ω−=  where ω = kc is the radian frequency of the 
disturbance. For spatial instability, discuss which variables (k or ω) should be real and which complex or imaginary. 

(c) Describe the eigenvalue nature of the problem. What are the eigenvalues and what are the eigenfunctions? Explain 
which eigenvalue determines the stability of the flow, and how. 

(d) We know that in dimensional terms, the units of ω are [radians/s] and ω = 2π f where f is the physical frequency 
[cylces/s]. The O-S equation we derived in class, however, is nondimensional. Using the fundamental equation for a 
wave, namely wave speed = frequency⋅wavelength, show that for spatial instability wave speed c is in general complex. 
Generate expressions for the real and imaginary components of c. 

(e) Search for Tollmien-Schlichting waves on the Internet and attach a picture or two of some nice flow visualization of T-
S waves. (Do not use the same ones shown in class.) Write a little about the photo such as what kind of experiment it 
was and who performed the experiment. Provide your source(s) (reference(s)). 

 
 
Note: There is another page. → 

  



3. (25 pts) In this problem, you will derive the linearized disturbance equations for continuity and momentum in cylindrical 
coordinates (r,θ, z), (ur, uθ , uz). Start with the Navier-Stokes equations (from ME 521) for incompressible flow in cylindrical 
coordinates: 

 
1 1( ) ( ) ( ) 0r zru u u
r r r zθθ
∂ ∂ ∂

+ + =
∂ ∂ ∂
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 ( )21θz z z z
r z z z

uu u u u pu u g ν u
t r r θ z ρ z
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+ + + = − + + ∇
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 where the Laplacian is given by 
2 2

2
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1 1r
r r r r zθ
∂ ∂ ∂ ∂ ∇ = + + ∂ ∂ ∂ ∂ 

 

 
(a) You can skip the θ-momentum equation (3), unless you really want to do it for fun. Following the notation and the step-

by-step procedure given in class, generate the basic equations (1b), (2b), and (4b); total equations (1t), (2t), and (4t); 
disturbance equations (1d), (2d), and (4d); and linearized disturbance equations (1l), (2l), and (4l), showing all your 
work and labeling each step. Be sure to number all your intermediate equations (1b), (1t)… For consistency, let the 
basic state be (Ur, Uθ , Uz). For convenience in grading, put boxes around your final linearized disturbance equations 
(1l), (2l), and (4l). Hint: To save time and writing, you can keep the Laplacian as is since it is linear – no need to 
expand it out. Also, don’t use the product rule to expand any of the derivatives (e.g., the first term in Eq. 1). 

(b) Simplify your linearized disturbance equations for the case of parallel axisymmetric basic flow, in which Uz = Uz (r), 
Ur = Uθ = 0, and ∂/∂θ = 0 everywhere. Also simplify for the case in which the fluctuations are also axisymmetric, 
meaning that uθ = 0 everywhere, but ur and uz are not zero. This time, expand out the Laplacian terms, but again, don’t 
use the product rule to expand any of the derivatives. You should get 2 terms in the continuity equation, 6 terms in the r-
momentum equation, and 6 terms in the z-momentum equation. Call your final axisymmetric equations (1a), (2a), and 
(4a). 

 
 
4. (15 pts) Suppose the Rayleigh equation is used to examine the stability of the Blasius boundary layer. We use a numerical 

approach on a computer with a reasonably refined mesh. [We will not actually do this; this problem is concerned only with 
the boundary conditions.] The appropriate boundary conditions are φ(0) = 0 and φ(∞) = 0. Unfortunately, one cannot go to 
infinity on a computer. Suppose the computational domain extends only to y/δ = 5, where φ  is not zero. For positive real k, 
find an appropriate boundary condition on φ  at the upper boundary, y/δ = 5. Note: Give a B.C. on φ  itself, not any of its 
derivatives. Hint: As y increases beyond the edge of the boundary layer, U approaches a constant; this should help you 
calculate Uy and Uyy there. Another Hint: You will need to solve a simple differential equation for φ(y). 
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