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ABSTRACT 

The use of origami principles to create 3-dimensional 
shapes has the potential to revolutionize active material structures 
and compliant mechanisms. Active origami structures can be applied 
to a broad range of areas such as reconfigurable aircraft and 
deployable space structures as well as instruments for minimally 
invasive surgery.  Our current research is focused on dielectric 
elastomer (DE) and magneto active elastomer (MAE) materials to 
create multi-field responsive structures.  Such multi-field responsive 
structures will integrate the DE and MAE materials to enable active 
structures that fold/unfold in different ways in response to electric 
and/or magnetic field.  They can also unfold either as a result of 
eliminating the applied field or in response to the application of an 
opposite field.  This concept is demonstrated in a folding cube shape 
and induced locomotion in the MAE material.  Two finite element 
models are developed for both the DE and MAE materials and 
validated through physical testing of these materials. The models are 
then integrated to demonstrate multi-field responses of a bi-fold 
multi-field responsive structure. The bifold model is designed to fold 
about one axis in an electric field and a perpendicular axis in a 
magnetic field. Future modeling efforts and research directions are 
also discussed based on these preliminary results. 

 
NOMENCLATURE 
Si, S1, S2, S3 Shapes due to applied fields 
σ Maxwell stress 
V Applied voltage 
t Thickness 
r Relative dielectric permittivity 
ε0 Permittivity of free space 
H Magnetic field magnitude 
α1, α2, µ1, µ2  Ogden parameters 
G Shear modulus 
 Gradient operator ׏
࣌஼ Cauchy stress 
H Magnetic field vector 
B Magnetic induction 
U Strain energy density 

I1, I2 First and second principle stretch invariants 
J Jacobian matrix 
஽ாߪ Dielectric stress 
஼ߪ Uniaxial (Cauchy) stress 
C10, C01 Mooney Rivlin constants 
 ௜௝ Kronecker deltaߜ
଴ߤ Magnetic Permittivity of free space 
 ௥ Remanent magnetization࢈
ߩ Density  
θ Fold angle 
R2 Coefficient of determination 
 tc MAE cantilever thickness 
௖ܮ MAE cantilever length 
 ெ/௉ MAE / PDMS folding composite thicknessݐ
 ெ/௉ MAE / PDMS folding composite widthݓ
ெܮ MAE folding composite length 
௉ܮ PDMS folding composite length 
s MAE  folding composite spacing 
 tc MAE cantilever thickness 
Vhi Voltage difference 
L Length of composite 
rDE Radius of fold line for DE 
rDE offset Offset of fold lone radius for DE 
rMAE Radius of fold line for MAE 
rMAE offset Offset of fold line radius for MAE 
EMAE Young’s modulus of MAE 
EDE Young’s modulus of DE 
EUL Young’s modulus of underlayer 
r,DE Relative permittivity of DE 
w1 Width of DE strips 
w2 Width of MAE strips 
t1 Active layer thickness 
t2 Underlayer thickness 
ρDE DE density 

ρMAE MAE density 



m Mass of active material 
Avector potential Magnetic vector potential 
Vdifference Applied voltage 
 
INTRODUCTION 

The use of origami principles to create three-dimensional 
shapes has the potential to revolutionize active material structures 
and compliant mechanisms. Origami principles can be applied to a 
broad range of areas such as reconfigurable aircraft and deployable 
space structures as well as instruments for minimally invasive 
surgery.  Our research goal is to accomplish rigorous design of multi-
field origami structures using compliant mechanisms and active 
materials.  These origami structures respond to multiple physical 
stimuli and will be realized through development of new nano- and 
micro-enabled active materials and rigorous design of active 
compliant mechanisms.  The multi-field responsive origami 
structures are designed to self-assemble (by folding) and self-
disassemble (by unfolding).  This ability to actively fold and unfold 
is in contrast to state-of-the-art active origami structures that must be 
manually unfolded [1].  An example of a multi-field self-assembling 
and self-disassembling origami structure is illustrated in Figure 1, 
where the active structure is capable of folding from an initial shape 
Si (flat sheet) to shape S1 (stair step) due to an magnetic field, to 
shape S2 (accordion) due to an electric field, and to shape S3 
(complex 3D shape [2]) due to a thermal field.  It can also actively 
unfold from any shape Sj back to the flat sheet Si, either as a result of 
eliminating the applied field or in response to application of an 
opposite field. 
 

  

 
A key component to accomplishing our research goal is 

development of integrated active materials for on-demand folding 
and unfolding.  This approach is in contrast to current efforts where 
discrete actuators, such as shape memory alloys or piezoelectric 
patches, are added to enable structures to deform or reconfigure into 
particular shapes [3-6]. Similarly, the few references that discuss 
programmable matter also employ similar discrete actuators, either 
affixed or in some cases embedded in the structure [1, 7], which add 
weight and complexity and limit scalability.  Previous compliant 
mechanism design approaches have focused on multifunctionality in 
response to mechanical actuation to a limited extent [8-12] and on 
morphing structures with small and large deformation [13-15], some 
with discrete active material actuators [16, 17], but none have 
considered folding structures or multi-field responses directly.   

In this work, we focus on dielectric elastomer (DE) and 
magneto active elastomer (MAE) materials to create multi-field 
responsive structures.  We first demonstrate bending actuation using 
DE and MAE separately, and then report our efforts to elevate the 
deformation of each from bending to folding, and finally introduce 
our concept of realizing a multi-field actuated structure using a bifold 
constructed from both MAE and DE materials. 

Dielectric elastomers are polymers that exhibit coupling 
between mechanical and electrical fields; resulting electromechanical 
strains can reach over 300%  [18-22] .  DEs are extremely promising 
as active materials because of their high specific elastic energy 
density (3.4 J/g), large strain response (>300%), rapid response (< 1 
ms), moderate stress (up to 8 MPa), and high electromechanical 

coupling efficiency (60-90%) [20, 23-29].  A DE can be thought of as 
a compliant capacitor, where the actuation mechanism takes 
advantage of the low modulus and high breakdown electric field of 
the material. As shown in Figure 2, the DE is generally coated with a 
compliant electrode on both sides, and a high voltage is applied. As a 
result of the voltage, opposite charges form at the electrodes, giving 
rise to electrostatic forces which compress and squeeze the film 
(Figure 2); compression of the film thickness brings opposite charges 
of two electrodes close together, and the planar stretching of the film 
separates similar charges of same electrode.  

                 Volume conservation forces the elastomer to expand 
transversely to the electric field direction by increasing the area of the 
electrodes. The electrostatic pressure across the electrode is given by 
the Maxwell stress σ. The Maxwell stress σ acting on the elastomer 
film can be calculated for a given applied voltage V and film 
thickness t by Equation 1 [30] , 
 

σ = r ε0 ሺ
௏

௧
ሻଶ                                 (1) 

 
where r is the relative dielectric permittivity of the material, and ε0 is 
the permittivity of free space (8.854 ൈ 10ିଵଶ	ܨ/݉).    

To date most scientific research has focused on the 
actuation mode based on planar expansion or area change of DE; the 
planar actuator can be easily built using the commercially available 
acrylic material 3M VHB 4905 and 3M VHB 4910, and has a proven 
track record of demonstrating very  high deformations when pre-
strained [19, 23, 24, 30, 31] . Although the concept of a DE bender is 
not new, and there is evidence of theoretical and modeling work 
mentioning this configuration [23, 30], the need for pre-stress in DE 
materials has prevented the experimental realization of DE-based 
benders to date.  In fact, the most widely used DE samples are 3M 
VHB 4905/4910, which require large pre-strain to demonstrate 
significant actuation. However, the last two years have seen a small 
number of studies utilizing a new thinner DE material based on 3M 
VHB (F9460PC, F9469PC, F9473PC), which enables configuring 
DE as unimorph and bimorph bender actuators [32-35] . 

Finite element analysis investigating electromechanical 
coupling has been performed for planar DE actuators [36]. Typically 
however, previous finite element modeling of DE-based actuators, 
both planar [37-39]  and bending [40], are non-coupled (i.e., purely 
mechanical) and apply pressure loads to simulate the induced 
Maxwell stress.  When calculating the Maxwell stress, it can be 
assumed that the DE thickness remains constant while undergoing 
deformation [40].  However, this assumption neglects the increase in 
Maxwell stress as the thickness of the DE decreases during the 
deformation.  To improve the application of Equation 1, efforts have 
been made to account for the change in thickness of the DE as it 
contracts under the application of Maxwell stress [37, 38]. Several 
constitutive models have been used to describe the hyperelastic 
behavior of a given dielectric elastomer, including the Ogden [38, 39, 
41], Arruda-Boyce [38, 40, 42], and Yeoh [38, 43] models. 

Magneto-active elastomers, also termed magneto-
rheological elastomers (MREs) owing to their roots in MR fluids, are 

Figure 1: A CONCEPT FOR A MULTI-FIELD RESPONSIVE
ORIGAMI STRUCTURE THAT ACTIVELY FOLDS FROM AN
INITIALLY FLAT SHEET TO COMPLEX THREE-
DIMENSIONAL SHAPES IN RESPONSE TO DIFFERENT
APPLIED FIELDS.  IT IS ALSO CAPABLE OF ACTIVELY
UNFOLDING FROM ANY SHAPE BACK TO THE FLAT
SHEET. 

Figure 2: PRINCIPLE OF OPERATION OF DE.



comprised of ferromagnetic particles embedded in an elastomer 
matrix.  Their initial technological importance stemmed from the 
relative increase in the material’s shear stiffness in the presence of 
moderate magnetic fields (ܪ ൎ 1 െ -with respect to the zero (ܩ݇	3
field stiffness, the so-called MR effect.  Reported values to date range 
from 60 – 300% depending on the initial stiffness of the matrix and 
the field strengths used [44-53]. Most work on MAEs use carbonyl 
iron, a roughly spherical form of the element easily available in a 
large range of sizes with useful particle sizes ranging from 100nm 
through 100s of micrometers [44-53]. 

Though a number of studies have engaged the problem of 
modeling MAEs in the context of soft-magnetic filler materials, none 
have addressed similar concerns in systems comprised of hard-
magnetic filler particles. This oversight has largely occurred since 
experimental investigations have only recently addressed the novel 
behaviors exhibited by hard-magnetic MAEs, which include large 
deformation transverse bending in cantilevers and in-plane shearing 
actuations in flat sheets, both from the undeformed state – behavior 
of which soft-magnetic carbonyl (spherical) iron materials are 
incapable [54-57]. 

In previous theoretical and computational work [58-70], 
simplifying assumptions required to generate tractable problems have 
excluded hard-magnetic torque-generating behavior as a necessary 
step to produce closed-form relationships.  Moreover, most studies 
failed to address the role of demagnetizing effects, the interaction the 
local field produced by the magnetic material has with the external 
field, and the magnetic material around it. Finally, most prior work 
modeling MAEs has focused on microstructure-property 
relationships.  While microstructure-property relationships of soft-
magnetic MAE materials are an important materials science issue, 
this work examines a larger length-scale, focusing on generating a 
framework for predictions of the macroscopic response for devices 
that are driven in part by hard-magnetic MAE materials. The 
problem, necessarily, requires descriptions of material properties but 
may do so at the macroscopic level. Additionally, while particle-
particle interactions caused by particle-level demagnetizing fields are 
below the length-scale lens of this work, the bulk geometry of the 
device in conjunction with magnetization behavior of the embedded 
MAE materials, generates a macro-scale demagnetizing field that 
must be accounted for since it disrupts the local field seen by the 
device itself. 

The remainder of the paper is organized in the following 
manner. The use of DE and MAE as bender actuators is described, 
including both the finite element modeling and related experimental 
validation.  Next, our efforts in evolving from bending to folding in 
both DE- and MAE-based structures is presented, followed by two 
proof-of-concept demonstrations for 3D folding using MAE. Both 
DE and MAE are then integrated into one finite element analysis 
model to show multi-field responses of a bi-fold structure. Finally, 
we describe future modeling efforts and research directions. 
 
BENDING ACTUATION USING DE AND MAE  

In this section, we explore different approaches to 
achieving large bending actuation driven by DE and MAE actuators, 
and present modeling of benders and related experimental validation.   
 
DE Bender 

Finite element modeling of DE bender.  Finite 
element analysis (FEA) of the DE bender was performed using the 
commercially available multi-physics finite element software 
package COMSOL Multiphysics [71].  Use of this software package 
is preferred because it is capable of solving coupled 
electromechanical models, which will be developed in future studies.  
Material properties for the DE were based on the commercially 
available 3M VHB 4905/4910.  The three-term Ogden model is used 
to describe the hyperelastic behavior of the DE.  The values of the 
Ogden parameters α1, α2, α3, µ1, µ2 and µ3 are 1.293, 2.3252, 2.561, 
0.00858 MPa, 0.0843 MPa, and -0.0233 MPa, respectively [38]. For 

a hyperelastic material described by the Ogden model, the shear 
modulus G at small strain can be expressed in terms of the Odgen 
parameters, as in Equation 2, 

 

ܩ ൌ
ଵ

ଶ
∑ μ௣ߙ௣
ே
௣ୀଵ                             (2) 

 
where N is the number of terms used for the Ogden model [72].  
Equation 2 yields a shear modulus of 0.0737 MPa for the DE.  The 
present work sets forth that the incompressibility of the DE can be 
modeled by assuming that the initial bulk modulus of the DE, which 
is a required input for COMSOL, to six orders of magnitude higher 
than the shear modulus.  The initial bulk modulus determines how 
strongly incompressibility is enforced.  The density of the DE is set 
equal to that of 3M VHB 4910, which is reported as 960 kg/m3 [73].  
The substrate, 3M magic scotch tape in this example, is treated as 
linear elastic, and its modulus of elasticity is experimentally 
determined to be 1.6 GPa.  The density of the substrate is 
experimentally determined to be 1063 kg/m3.  The Poisson’s ratio of 
the substrate is assumed to be 0.3. 

The model of the DE bender consists of four components 
(Figure 3).  Components 1 (0.16368 cm x 5.5 cm x 0.75 cm), 2 
(0.16368 cm x 0.5 cm x 0.75 cm), and 3 (0.16368 cm x 6.0 cm x 0.25 
cm) are treated as the hyperelastic DE, while Component 4 (0.031 cm 
x 6.0 cm x 0.95 cm) is treated as the linear elastic substrate.  The 
thickness of the DE components (0.16368 cm) is used to model the 
six layers of the DE as a single layer bulk material.  Similarly, the 
thickness (0.031 cm) of the substrate component is selected to model 
the 5 layers of 3M magic scotch tape as a single layer bulk material.  
To simulate the individual DE components as a single entity, 
continuity conditions are applied to the mutual faces shared by 1, 2, 
and 3.  To simulate a connection between the DE and substrate along 
the areas where the compliant electrode is not present, continuity 
conditions are applied to the mutual face of 3 and 4 and the mutual 
face of 2 and 4.  Where the compliant electrode is present between 
the DE and substrate, there is no connection between the materials 
because the compliant electrode will not allow the DE to adhere to 
the substrate.  For this reason, a frictionless contact condition is 
applied to the mutual face of 1 and 4.  A fixed boundary condition is 
applied to the faces of 1, 3, and 4 with their normal vector oriented in 
the negative y-direction.  A symmetry boundary condition is applied 
to the faces of 1, 2, and 4 with their normal vector oriented in the 
negative z-direction.  To simulate the effect of the Maxwell stress, 
uniform pressure loads (dielectric pressure) are applied to the large 
faces of 1.  One of these faces is indicated on 1 in blue in Figure 3.  
The dielectric pressure is set equal to half the Maxwell stress, which 
means the sum of the dielectric pressures will cause a stress in 1 
equal to the Maxwell stress.  For the calculation of the Maxwell 
stress, the material thickness used in Equation 1 is set equal to the 
thickness of one of the six DE layers (272.8 µm).  By doing so, the 
induced Maxwell stress experienced by the bulk 1 will be equivalent 
to the Maxwell stress induced in each individual layer.  Due to the 
large expected deformation of the DE bender, it is necessary to 
ensure any load placed on the bender is aligned with a material’s 
local coordinate system.  When large deformation is expected, it 
should be noted that a geometric nonlinearity feature, which alters 
stress-strain relationships, must be implemented.  

The model is meshed utilizing the predefined extra fine 
element size of the tetrahedral element meshing feature to yield 
33,010 total elements.  The model simulates applied voltages ranging 
from 100 V to 4000 V in 100 V increments.  The resulting magnitude 
of tip displacement in the x- and y-directions is studied as a function 
of the nominal electric field.  Nominal electric field is calculated by 
dividing the applied voltage by the nominal initial thickness of a 
single layer of dielectric elastomer.  The resultant tip displacement is 
then normalized with respect to length of the DE bender (6 cm) for 
comparison between the finite element model and experimental 
analysis.  Simulations with an applied voltage greater than 4000 V 
were found to encounter convergence difficulties.  It is believed the 
convergence difficulties resulted from the large deformation 



experienced by the DE bender and the strong enforcement of DE 
incompressibility. 

 
Figure 3: FINITE ELEMENT ANALYSIS MODEL OF THE 
DIELECTRIC BENDER CONSISTING OF DIELECTRIC 
ELASTOMER COMPONENTS (LABELED 1, 2, AND 3) AND A 
SUBSTRATE COMPONENT (LABELED 4).  THE FACE 
SHOWN IN BLUE INDICATES ONE OF THE TWO FACES 
THAT THE DIELECTRIC PRESSURE ACTS ON. 
 

Experimental validation of DE bender. 3M 
VHB (F9473PC) elastomer was chosen due to its high dielectric 
constant (4.7), low thickness (272.8 µm), very low young’s modulus 
(0.19MPa), and adhesive surface. Carbon conductive grease (MG 
Chemicals) was chosen as compliant electrode due to its outstanding 
electrical conductivity and great tolerance and compliance to large 
strain. 3M magic scotch tape was selected as the passive substrate 
because it is a good electrical insulator, very thin (62µm thick), and 
has very high young’s modulus (1.6GPa) compared to DE layers. The 
bending actuator consists of three major portions: active material 
(DE), substrate (scotch tape) and compliant electrodes (carbon 
grease) as shown in Figure 4.   

Rectangular DE samples of 6cmx2cm are cut, carbon 
grease is manually painted on a 5.5cmൈ1.5cm area and a long narrow 
aluminum foil is attached to the edge of the electrode to create an 
external terminal. Then the substrate is cut from 3M magic scotch 
tape in 6cmൈ1.9cm size and attached to the DE containing carbon 
grease. The paper liner from the other side of the DE sample is 
removed, and carbon grease is again manually applied. Then a new 
DE sample is stacked on top of the previous one, and the adhered 
layers are pressed together manually for good inter layer bonding. 
Afterwards, the paper liner of this DE sample is again removed to 
expose the sticky side of the sample and to paint carbon grease on it. 
Subsequently, a total of six DE layers are stacked one on top of one 
another to fabricate the bending actuator. In between the steps of 
layer-to-layer stacking, aluminum foils are attached to the alternative 
position of each stack to separate positive and negative electrodes. 

We have used both a vertical configuration (where the DE 
overcomes gravity effects to bend, Figure 5a) and a horizontal 
configuration (Figure 5b), and noted that bending was more than 5 
times larger in the case of the horizontal configuration; therefore, this 
set-up was adopted for the remainder of the study.  Table 1 reports 
the tip displacement at 4KV for both configurations. 
  Four DE benders were fabricated using the method shown 
in Figure 4. All these benders were actuated in the horizontal 
configuration with applied voltages ranging from 250V to 4000 V in 
250 V increments. The normalized resultant tip displacement (R/L, 
where L is the length of the sample) versus the corresponding electric 
field is shown in Figure 6. 

 

  
 

 
Figure 4: FABRICATION OF A UNIT LAYER OF DE BENDING 
ACTUATOR, (A) TOP VIEW OF  BENDING ACTUATOR WITH 
CARBON GREASE,  (B) SUBSTRATE,  (C) SIDE VIEW OF 
AN UNIT OF BENDING ACTUATOR, (D) 3D VIEW OF 
STACKED BENDING ACTUATOR. 

 

 
(a) 

 
(b) 

Figure 5: (a) VERTICAL CONFIGURATION AND (b) 
HORIZONTAL CONFIGURATION FOR DE BENDER AT 0KV 
AND 4 KV. 

 
Table 1. COMPARISON OF TIP DISPLACEMENT OF THE DE 

BENDER 
Tip displacement 

(cm) 
Vertical 

configuration 
Horizontal 

configuration 

X-direction 1.081 cm 4.445 cm 
Y-direction ~ 0 cm 3.214 cm 

Resultant(R=√(X2+Y2) ~1.081 cm 5.483 cm 
 
 
         



 
Figure 6: RESULTANT NORMALIZED TIP DISPLACEMENT 
OF THE DE BENDERS AS A FUNCTION OF ELECTRIC 
FIELD.  
 

From Figure 6 it can be seen that the error bars are larger at 
higher voltages.  This increase in error magnitudes at higher voltages 
is attributed to the fact that: (1) with the increase in displacement 
standard deviation also increases at higher voltages; and (2) although 
all the benders were fabricated in the same way, the magnitudes of 
actuation at a particular voltage for all the benders are not exactly the 
same due to the non-uniform thickness of the applied carbon grease, 
imperfect alignment of the electroded region of the DE layers, and 
the difference in the dimensions of the samples and electrode areas at 
this very small scale.  

To compare to the FEA predictions, five samples of the DE 
bender device, with 6 layers of DE and 5 layers of substrate, are 
arranged in the horizontal configuration in order to minimize the 
influence of gravity compared to the vertical configuration.  In the 
FEA, the effects of gravity are neglected.  Experimental results are 
presented with their respective ±standard deviations, along with FEA 
predictions (Figure 7).  Comparison between FEA and experimental 
analysis shows an overall reasonable agreement.  However, the FEA 
underestimates displacement for nominal electric fields less than ~8 
MV/m and overestimates displacement for nominal electric fields 
greater than ~14 MV/m. 
 

 
Figure 7: NORMALIZED TIP DISPLACEMENT OF THE DE 
BENDER AS A FUNCTION OF NOMINAL ELECTRIC FIELD 
FROM THE FINITE ELEMENT ANALYSIS (WHITE CIRCLES) 
AND EXPERIMENTAL ANALYSIS (BLACK CIRCLES) OF 
THE HORIZONTAL CONFIGURATION.  DE BENDER 
CONSISTS OF 6 LAYERS OF DE AND 5 LAYERS OF 
SUBSTRATE. 

 
   

There are several factors that could be contributing to the 
discrepancies between the FEA results and experimental analysis.  
For the FEA, the 6 layers of DE were treated as a bulk material, 
which neglects the effects of the compliant electrodes between the 
layers of the DE.  By doing so, frictional effects between the DE 
layers and the compliant electrodes are neglected in the FEA.  
Additionally, the FEA does not account for any stiffening of the DE 
bender due to the increased overall thickness of the DE bender 
caused by the layers of compliant electrodes.  Because the 
experimental configuration works against the frictional and stiffening 
effects, the tip displacement of the experimental configuration would 
be lower than that of the FEA.  This can explain the behavior at high 
nominal electric fields where the FEA overestimates displacement.  It 
should also be noted that imperfections of the experimental sample 
resulting from the fabrication process can lead to inconsistencies 
between the FEA and the experimental analysis.  This notion can be 
observed in the experimental analysis where the standard deviation 
generally increases with an increase in nominal electric field.   

As an example of fabrication imperfection, an electroded 
region on one side of a layer of DE may not be perfectly aligned with 
the electroded region on the opposite side of the same layer.  This 
would affect the electric field, which in turn would affect the induced 
Maxwell stress.  While future studies will utilize improved 
fabrication methods, it should be noted some level of imperfection 
will remain.  The Maxwell stress calculation used for the FEA 
assumed a constant DE thickness throughout the deformation.  This 
neglects the effect of the Maxwell stress reducing the DE thickness, 
which would in turn increase the Maxwell stress.  The calculation 
also assumes the DE thickness, and therefore the induced dielectric 
pressure, is uniform.  Additionally, the accuracy of Equation 1 may 
begin to deteriorate as a DE bender undergoes large deformation out 
of its original plane, which may result in a distortion of the electric 
field.  Because achieving large deformation of the DE bender is 
desirable, it will be crucial that future studies implement a more 
generalized formulation for the induced stress in the DE, which can 
be more applicable to large deformations. 
 
MAE Bender 

Finite element modeling of MAE bender. 
Modeling MAE material requires large-deformation multiphysics 
finite element modeling that couples Maxwell’s equations with 
hyperelastic material formulations through the Maxwell surface 
stress.  This approach is capable of predicting the response of 
arbitrary geometries to arbitrary magneto-mechanical loadings for 
hard-magnetic materials.  

The finite element problem seeks to solve conservation of 
linear momentum in the absence of body forces, i.e., the elasto-static 
problem, ࣌׏ ൌ ૙,	 where ࣌		is the Cuachy stress and magneto-static 
Maxwell’s equations, સ ൈ ࡴ ൌ ૙,	where ࡴ is magnetic field vector, 
and  સ ∙ ࡮ ൌ 0 where ࡮  is the magnetic induction. The mechanical 
behavior of the MAE material is modeled as a Mooney-Rivlin 
hyperelastic solid with strain energy density U, as in Equation 3, 

ܷ ൌ ଵܥ ቀܬ
ି
మ
యܫଵ െ 3ቁ

ଶ
൅ ଶܥ ቀܬ

ି
ర
యܫଶ െ 3ቁ

ଶ
 (3) 

 
where ܫଵand ܫଶ are the first and second principle stretch invariants 
and ܬ is the Jacobian matrix. The coupled behavior of the magneto-
elastic problem is accounted for through the Maxwell stress tensor

M , as in Equation 4, 

࣌ெ ൌ ଴ߤ
ି૚ 	ቀ࡮࡮ െ

ଵ

ଶ
 ௜௝ቁ  (4)ߜଶ࡮

 
which adds to the Cauchy stress to form an unequilibrated magnetic 
traction on the outward boundary between magnetic and non-
magnetic domains in the finite element model.  The system of 
equations is solved in COMSOL employing large deformation 
(Green-Largrange) strain formulations and an iterative solution 
process that calculates the Maxwell stress tractions in the deformed 
configuration for each iteration. 
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Finite element modeling of an MAE-composite structure 
requires knowledge of the mechanical and magnetic properties. 
Mechanically, MAE materials can be modeled as hyperelastic 
materials given an appropriate strain energy density function. Since 
the MAE material used herein is 70% silicone rubber, its behavior is 
assumed to be dominated by hyperelastic effects, while the 
ferromagnetic filler particles are assumed rigid and to deform affinely 
with matrix.   The hyperelastic behavior was characterized using 
uniaxial tension tests and fit to a two-term Mooney Rivlin 
approximation sufficient for the uniaxial nature of the bending 
problem studied [70].  The two-term Money-Rivlin prediction for 
uniaxial stress ߪ is given by Equation 5, 

 
ߪ ൌ ଵܫଵ଴ሺܥ െ 3	ሻ ൅	ܥ଴ଵሺܫଶ െ 3ሻ (5) 

 
where ܥଵ଴ and ܥ଴ଵ are material parameters, and the material is 
assumed incompressible.  The best fit yields the constants given in 
Table 2. 
 

Table 2: MATERIAL PARAMETERS FOR MODEL 
SIMULATION 

 
Magnetically, the MAE and PDMS materials are assumed to behave 
according to Amperes law as in Equation 6, 
 

࡮ ൌ ࡴ଴ߤ ൅  ௥ (6)࢈
 

where ࢈௥  is remanent magnetization, the internal magnetization at 
zero applied field. Measurements of remanent magnetization yielded 
‖௥࢈‖ ൌ 0	݉ܶ for the PDMS material as expected and ‖࢈௥‖ ൎ
130	݉ܶ for the MAE material in the poling direction.  
 

Experimental validation of MAE bender.  MAE 
materials were fabricated using 70 v/v% Dow Corning HS II RTV 
silicone rubber compound, with 20:1 catalyst to compound ratio by 
weight,  mixed with 30 v/v% 325 mesh barium ferrite (BaM) 
particles purchased from Sigma-Aldrich.  The resulting composite 
has an estimated density of ߩ ൌ 2800݃/ܿ݉ଷ. BaM, with coercive 
strength ߤ଴ܪ ൌ 0.6ܶ provided hard-magnetic behavior. Fabrication 
methods are described in detail elsewhere [53]. In the MAE 
composites created in this work, a substrate was cast from Gelest 
optical incapsulant, an optically clear two-part silicone RTV 
compound with a stated specific gravity of 1.01.  The compound was 
cured in molds of the desired dimensions. This material will be 
identified as PDMS.  

To test the efficacy of using finite element methods to 
model the MAE magneto-mechanical response, free cantilever 
experiments were conducted using the MAE material. Cantilevers 
have dimensions 2.80 x 5.25 x 30.5 mm3, where the first dimension is 
the thickness in the field direction, ݐ௖, the second dimension the 
sample thickness into the plane, and third dimension is the free 
length, ܮ௖ (see Figure 9) . The predicted response of the finite 
element model was then compared to experiment. 

Cantilevers were placed in a commercial electromagnet and 
subjected to uniform fields varied from െ2	݇ܩ ൏ ܪ ൏  while ܩ݇	2
resultant tip displacement, ܴ, was recorded using digital imaging and 
measurement software.  Figure 8a shows representative undeformed 
(top) and deformed (bottom) shapes. Results of the experiments on 
three samples are given in Figure 8b, and show the ability of the 
material to produce large deformations.    

A finite element model of the bending experiment was 
constructed to validate the FE modeling approach. The geometry of 
the model, given in Figure 9, shows the MAE cantilever domain 
(grey) and its fixed base (1).  A rectangular air domain, sized to 
produce a uniform far field having no effect on the deformed 
geometry solution, is modeled as having magnetic vector potentials 

ு௜ on ሺ݅࡭ ൌ 2ሻand ሺ݅ ൌ 3ሻ such that the magnetic flux density, found 
from ࡮ ൌ સ ൈ  yields the desired range of values. Model material ,࡭
parameters where taken from Table 2. Results of the FE model given 
in Figure 8b (open circles) show reasonable agreement over the range 
of field strengths tested. 

Use of a single valued remanent magnetization along the 
poling axis may account for discrepancies between the simulation 
and the experiments. The remanence used assumes perfect alignment 
of the magnetizations of all embedded particles along the poling 
direction while in reality the magnetizations are distributed about the 
poling axis. The measured remanence provides an average value of 
the entire distribution. In bending experiments the distribution of the 
magnetizations, as it becomes increasingly skewed, generates the 
magnetic torque however that now skewed distribution is not 
accounted for in simulations. Improvement can be made by better 
initial poling of materials or by modeling the actual magnetization 
distribution.  
  

Figure 8: (a) REPRESENTATIVE UNDEFORMED AND 
DEFORMED SHAPES OF CANTILEVER AND (b) RESULTS 
OF FREE CANTILEVER BENDING ACTUATION 
EXPERIMENT,COMPARED TO COMSOL SIMULATIONS. 
 

 

Material ࡯૚૙[kPa] ࡯૙૚[kPa] ߤ଴࢘ࡹ [mT] 
MAE 190 40 130 

gravity 

gravity 

(a) 

(b) 



 
Figure 9: SCHEMATIC OF THE CANTILEVER BENDING 
FINITE ELEMENT MODEL SHOWING SAMPLE, SAMPLE 
DIMENSIONS, BOUNDARY CONDITIONS ON CANTILEVER, 
BOUNDING AIR BOX (NOT TO SCALE) , REMANENCE 
DIRECTION (FILLEDBLOCK ARROWS), AND MAGNETIC 
FIELD DIRECTION (OPEN BLOCK ARROWS). 
 
FROM BENDING TO FOLDING USING DE AND MAE  

Mathematical models of origami structures typically 
assume that the material has zero thickness, and therefore creases can 
be assumed to be lines.  Real materials, on the other hand, have finite 
thickness which can make sharp creases difficult to obtain.  In this 
section we explore different configurations to achieve folding in 
active materials. The basic difference between bending and folding is 
defined in our work as: folding has a crease with a sharp edge or 
nearly a sharp edge, while bending does not (Figure 10).   

 
Figure 10: ILLUSTRATION OF BENDING (LEFT) VS. 

FOLDING (RIGHT). 
 
Free-Folding of DE 

In the DE case, a folding actuator is fabricated the same 
way as the bender by stacking 6 layers of DE. In order to promote the 
creation of a folding angle upon actuation, a 10mm narrow slot is 
created on the substrate side of the bending actuator using scotch tape 
(Figure 11). In Figure 12, we can see a fold angle forming as voltage 
increases, which is not seen in the bender pictured in Figure 5. This 
folding behavior is attributed to presence of the notch in the substrate 
which localizes the deformation.  

Experimental results of fold angle versus applied voltage 
are shown in Figure 13.  It can be seen that the fold angle increases 
approximately quadratically with voltage.  In general the fold angle 
depends on the amount of applied voltage, compliant electrode type, 
number of active layers, substrate type and shape and size of the 
notch.  Ongoing work includes optimization of the substrate design to 
maximize fold angle. 

 

 

  
Figure 11: 3D VIEW OF THE FABRICATION PROCEDURE 
OF FOLDING ACTUATOR.  

 

 
Figure 12: FOLDING ACTUATION OF THE SAMPLE AS THE 
DRIVING VOLTAGE IS INCREASED FROM 0 TO 4 KV. 

 

 
Figure 13: EXPERIMENTAL RESULTS OF FOLD ANGLE 
(LINES-POINTS) VS. ELECTRIC FIELD. 
 
Free-Folding of MAE 

A multi-segmented MAE-PDMS composite was 
constructed to demonstrate folding (Figure 14).  The MAE material 
was used for the active patches (poled in opposing orientations as 
shown within the patch) while the PDMS material was used as a 
connective under-layer.  The system was subjected to uniform 
vertical magnetic fields െ2݇ܩ ൏ ܪ ൏  while fold angles were ܩ2݇
recorded. Dimensions of the device geometry corresponding to 
Figure 14 are given in Table 3.  A representative deformed shape is 
given in Figures 15a. 

Data in Figure 15b show fold angle, averaged across all 
MAE patches, vs. field strength. Results show reversible behavior as 
well as the ability to achieve relatively large fold angles. Unequal 
folding across patches as depicted in Figure 15a have also been seen 
in preliminary simulations (not shown). Folding is driven by a 
balance of energies between the magnetic field-MAE patch 
interaction and the strain energy within the folding region.  The 
patches seek to align with the field but are resisted by the elastic 
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stiffness of the PDMS substrate. Ongoing work includes optimization 
of the device geometry to maximize fold angle. 
 

  
Figure 14: MAE COMPOSITE CONSISTING OF PDMS 
UNDERLAYER BONDED TO MAE MATERIAL PATCHES. 

 
Table 3. MAE FREE-FOLDING STRUCTURE DIMENSIONS 

 

Parameter 
Value 
[mm] 

 Parameter Value[mm] 

MAE/PDMS 
Thickness 
௉ݐ) ൌ  (ெݐ

3.2  
PDMS Free 
Length (ܮ௉) 

119.4 

MAE/PDMS 
Width  

ெݓ) ൌ  (௉ݓ
11.4  

MAE Spacing 
 (ݏ)

9.5 

MAE Patch 
Length (ܮெ) 

20.3  MAE Patches 4.0 

 

 
Figure 15: FREE ACTUATION FOLDING TEST OF THE MAE-
PDMS COMPOSITE (A) REPRESENTATIVE DEFORMED 
SHAPE OF MAE-PDMS COMPOSITE SUBJECTED TO 
TRANSVERSE FIELD of ૚	ࡳ࢑ AND (B) EXPERIMENTAL 
AVERAGE FOLDING ANGLE  VS. APPLIED FIELD. 

 
PROOF OF CONCEPT FOR 3D FOLDING 
Self-Locomotion 

Self-locomotion was established by bonding MAE patches 
to a PDMS substrate, as shown in Figure 16. Two MAE patches, 
measuring (1.905 cm x 1.143 cm x 0.3175 cm) and (0.889 cm x 0.508 
cm x 0.3175 cm) were attached to a (0.127 cm) thick substrate of 
tapered width. A small piece of PDMS was added to each end to 

promote contact and release from the surface as the field reversed. 
When subject to an oscillating magnetic field of ߤ଴ܪ ൌ
െ0.2	to	0.2	ܶ at 1ݖܪ	the sample translated approximately 2.5 cm per 
cycle. 

       
 

 
Figure 16: SELF-LOCOMOTION DEVICE (TOP) POSITIVE 
FIELD, (BOTTOM) ZERO-FIELD. 

 
Folded Box  

The second proof-of-concept device folds from an initially 
flat shape into a 3D box under a 0.2 T magnetic field.  The sample 
had 4 MAE patches of equal size (1.905 cm x 1.143 cm x 0.3175 cm) 
that were all placed on a silicone substrate (Figure 17). Upon 
application of the magnetic field, each of the four sides fold upward 
to form the box. This quasi-static shape change could be optimized to 
oscillate like the self-locomotion device. 

 

 
 

Figure 17: FOLDED BOX (LEFT) UNDER ZERO-FIELD, AND 
(RIGHT) POSITIVE FIELD. 
 
BI-FOLD CASE STUDY 

A bi-fold structure is proposed that consists of both the DE 
material and the MAE material for multi-field responses.  This 
response is achieved using a multi-layer material made up of DE and 
MAE alternating strips (Figure 18).  These are attached to a substrate 
underlayer of passive PDMS to constrain the active materials.  There 
are notches in the underlayer parallel to the x-axis and y-axis that act 
as the fold lines (creases) for the structure.  When the material is 
subject to an electric field, the structure will bend about the fold line 
parallel to the x-axis.  When the material is subject to a magnetic 
field, the structure will instead bend about the fold line along the y-
axis.  The device is made up of five total strips, three DE strips and 
two MAE strips.  The length and width of the structure is 25 mm. 

 ,௉ݓ ெݐ
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Figure 18: MULTI-FIELD ACTIVE MATERIAL CONSISTS OF 
DE AND MAE WITH BIASING SILICONE ELASTOMER 
UNDERLAYER (PDMS) AND FOLD LINES. 

 
COMSOL simulations of the bifold structure were 

conducted.  It is assumed that the materials are linear elastic, and the 
model is only valid for small deformations.  There are two boundary 
conditions used to generate these models, one for when it is subject to 
an electric field, and one for when it is subject to a magnetic field.  
For the case when it is subject to an electric field, the boundary 
conditions are set so that the xz faces of the underlayer are fixed.  For 
the case when the magnetic field is applied, the negative xy face is 
fixed in all directions, and the positive xy face is fixed in the y and z 
directions, but is free to translate in the x direction.  The mesh uses 
the predefined coarse element size with free tetrahedral elements.  

The DE actuation is modeled using a uniform pressure.  
The pressure is proportional to the relative permittivity of the 
material and square of the electric field applied across the elastomer, 
as shown in Equation 7, where ε0 is the permittivity of space, εr_DE is 
the relative permittivity of the material, and Vdifference is the voltage 
difference. 
 

P	 ൌ
ε౥ε౨_ీు୚ౚ౟౜౜౛౨౛౤ౙ౛

మ

ሺ୲భା୲మሻమ
  (7) 

 
The MAE actuation is completed using the magnetic field module in 
COMSOL at atmospheric temperature and pressure.  Key material 
properties are shown in Table 4.  

 
Table 4: MATERIAL PROPERTIES USED IN COMSOL 

Material 
Properties  

Value 

L 25 (mm) 

rDE 2 (mm) 

rDE_offest 2.25 (mm) 

rMAE 2 (mm) 

rMAE_offset 2.25 (mm) 

Br 0.05 (T) 

EMAE 0.1e9 (Pa) 

EDE 0.1e9 (Pa) 

EUL 0.1e9 (Pa) 

εr_DE 5.0 

ε0 8.85 e-12 

 
Figure 19 shows the the deformed shapes of the bifold 

structure when it has been subject to an electric (left) and magnetic 
(right) field, as predicted by the Comsol simulations.   

 
Figure 19: MULTIPHYSICS SIMULATIONS OF NOVEL 
MULTI-FIELD ACTIVE MATERIAL (LEFT) SUBJECTED TO 
AN ELECTRIC FIELD, AND (RIGHT) SUBJECTED TO A 
MAGNETIC FIELD.  THE BIFOLD STRUCTURE EXHIBITS 
BENDING IN ORTHOGONAL DIRECTIONS DICTATED BY 
ELECTRIC OR MAGNETIC FIELD, RESPECTIVELY. 
DEFORMATION SHOWN IS NOT TO SCALE. 

 
A case study using the bifold model was conducted to 

observe the tradeoffs between several variables.  These variables 
were the thickness of the active layer (t1), the widths of the DE and 
MAE strips (w1 and w2), the elastic modulus of the underlayer, the 
magnitude of the applied voltage, and the magnitude of the applied 
magnetic field.  The z displacement of the structure from the flat 
position was used to calculate the fold angle by dividing the z 
displacement by half of the length or width.  The energy required to 
generate the fold is proportional to the square of the applied electric 
or magnetic field.  The density of the DE material was set at 1 kg/m3, 
and the density of the MAE material was set to 2 kg/m3.  The mass of 
the active material m was calculated using Equation 8, where ρ is the 
density, w is the width of the strips, and L is the length.  
 

m ൌ ൫3ρୈ୉Lwଵtଵ൯ ൅ ሺ2ρ୑୅୉Lwଶtଵሻ   (8) 
 
The design parameters are shown in Tables 5 and 6.  The widths of 
the strips were varied so as to maintain a constant overall width.  

 
Table 5: DE PARAMETERS 

Material Property Value 

w1 (mm) 4, 5, 6.5 

w2 (mm) 4, 5, 6.5 

t1 (mm) 0.15, 0.175, 0.2, 0.225 

EUL (MPa) 250, 500, 750, 1000 

Vdifference (V) 10000, 20000, 30000, 40000 

 
Table 6: MAE PARAMETERS 

Material Property Value 

w1 (mm) 4, 5, 6.5 

w2 (mm) 4, 5, 6.5 

t1 (mm) 0.5, 0.55, 0.6, 0.65, 0.7 

EUL (MPa) 1.4, 1.5, 1.6 

Avector_potential  (Wb/m)  
(scales 1=2.67T) 

0.025, 0.05, 0.075, 0.1 

 
The relative mass, relative angle, and relative energy were calculated 
relative to the minimum and maximum value in each set, shown in 
Equation 9.   
 

௏௔௟௨௘ି௠௜௡௏௔௟௨௘

௠௔௫௏௔௟௨௘ି௠௜௡௏௔௟௨௘
 = Rel_Value            (9) 



 
The results of the parameter variation study are shown in 

Figure 20.  It can be observed that as the mass of the material 
increased, the energy required for the desired fold angle increased.  
This is expected since a high mass is a result of higher thickness 
which requires more activation energy.  The electric field gives the 
highest fold angle in the presence of high energy at low mass; 
however, when there is more mass and less energy available, then 
magnetic field offers a higher fold angle relative to the electric field.   

 
Figure 20: VISUALIZING THE TRADEOFFS IN MASS, 
ENERGY, AND FOLD ANGLE FOR THE BI-FOLD CASE 
STUDY.  

 
CONCLUSIONS 
In this paper we have introduced the concept of multi-field 
responsive origami structures.  Two active material systems, 
dielectric elastomers (DE) and magneto-active elastomers (MAE), are 
being developed to realize the vision of active folding in multi-field 
origami structures.  In both materials we have demonstrated the 
ability to achieve folding in simple devices.  Ongoing work includes 
optimization of the active material and substrate to maximize fold 
angles while minimizing actuation energy.  Improvements are needed 
in the finite element models to achieve greater accuracy at high field 
strengths.  Capturing all the coupled electro-magneto-mechanical 
effects directly using multiphysics software is expected to result in 
improved accuracy.  Finally, as the bifold model develops it must 
account for the materials being hyperelastic, having large 
deformations, and incompressibility. 
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